ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)雙目ORB-SLAM3的特征匹配算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

云南省科技廳基礎(chǔ)研發(fā)計(jì)劃-青年基金項(xiàng)目(202301AU070059)和昆明理工大學(xué)人才培養(yǎng)項(xiàng)目(KKZ320230104)


Feature Matching Algorithm Based on Improved Binocular ORB-SLAM3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)ORB算法在雙目特征匹配階段誤匹配率高而導(dǎo)致無法滿足高精度定位要求的問題,提出了一種基于改進(jìn)雙目ORB-SLAM3的特征匹配算法。在特征點(diǎn)匹配階段引入最近鄰匹配算法(FLANN),通過設(shè)定比率閾值篩選出更為精確的匹配對(duì),在雙目ORB-SLAM3立體匹配中引入自適應(yīng)加權(quán)SAD-Census算法,通過考慮像素之間的幾何距離,重新計(jì)算SAD值并與Census算法相融合來提高特征匹配穩(wěn)定性和精度,同時(shí)加入自適應(yīng)的SAD窗口滑動(dòng)范圍進(jìn)一步擴(kuò)大搜索距離,進(jìn)而篩選出正確的匹配來提高系統(tǒng)精度。在EuRoC數(shù)據(jù)集和真實(shí)室內(nèi)場(chǎng)景中進(jìn)行實(shí)驗(yàn),結(jié)果表明與改進(jìn)前ORB-SLAM3算法相比,在數(shù)據(jù)集下改進(jìn)算法定位精度提高23.32%,真實(shí)環(huán)境中提高近50%,從而驗(yàn)證了改進(jìn)算法可行性和有效性。

    Abstract:

    Aiming at the problem that the traditional ORB algorithm fails to meet the high-precision localization requirements due to the high mis-matching rate in the binocular feature matching stage, a feature matching algorithm based on the improved binocular ORB-SLAM3 is proposed. The nearest neighbor matching algorithm (FLANN) is introduced in the feature point matching stage, and more accurate matching pairs are filtered out by setting the ratio threshold, and the adaptive weighted SAD-Census algorithm is introduced in the binocular ORB-SLAM3 three-dimensional matching, and the geometric distances between the cases are taken into account to recalculate the SAD values and merge them with the Census algorithm to improve the stability and accuracy of feature matching, while the adaptive weighted SAD-Census algorithm is introduced. At the same time, the adaptive SAD window sliding range is added to further expand the search distance, so as to filter out the correct matches to improve the accuracy of the system. Experiments are carried out in the EuRoC dataset and real indoor scenes, and the results show that compared with the pre-improved ORB-SLAM3 algorithm, the localization accuracy of the improved algorithm is improved by 23.32% in the dataset, and nearly 50% in the real environment, thus verifying the feasibility and effectiveness of the improved algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

傘紅軍,馮金祥,陳久朋,彭真,趙龍?jiān)?基于改進(jìn)雙目ORB-SLAM3的特征匹配算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):625-634. SAN Hongjun, FENG Jinxiang, CHEN Jiupeng, PENG Zhen, ZHAO Longyun. Feature Matching Algorithm Based on Improved Binocular ORB-SLAM3[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):625-634.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼