ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)加速模型的雜亂目標(biāo)實(shí)時(shí)視覺檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52375083)、重慶英才計(jì)劃項(xiàng)目(CQYC20220207232/cstc2024ycjh-bgzxm0052)、重慶教委科研重大項(xiàng)目(KJZD-M202401101)、重慶自然科學(xué)基金項(xiàng)目(cstc2021jcyj-msxmX0372)和重慶技術(shù)創(chuàng)新與應(yīng)用項(xiàng)目(CSTB2022TIAD-CUX0017)


Real Time Visual Detection for Cluttered Targets Based on Deep Learning Acceleration Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在農(nóng)業(yè)機(jī)械自動(dòng)裝配產(chǎn)線上,其嵌入式控制平臺片上資源極其有限,而基于卷積神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)檢測系統(tǒng)參數(shù)量過大,難以直接移植于嵌入式平臺,為此,本文提出一種基于改進(jìn)ResNet18-SSD(Single shot multi-box detector)和現(xiàn)場可編程門陣列(Field programmable gate array,F(xiàn)PGA)加速引擎的深度學(xué)習(xí)實(shí)時(shí)檢測方法。為了降低參數(shù)量的同時(shí)提高檢測模型準(zhǔn)確性,提出基于ResNet18-SSD的深度學(xué)習(xí)快速檢測模型,利用優(yōu)化改進(jìn)后的ResNet18網(wǎng)絡(luò)替換SSD模型的VGG16前置網(wǎng)絡(luò),引入多分支同構(gòu)結(jié)構(gòu)和非對稱并行殘差結(jié)構(gòu),使其能適應(yīng)遮擋、光線昏暗等復(fù)雜場景;在滿足檢測精度需求的情況下,采用動(dòng)態(tài)定點(diǎn)量化的方式,對模型數(shù)據(jù)量進(jìn)行縮減,以提高檢測模型執(zhí)行效率。針對改進(jìn)ResNet18-SSD模型中消耗資源嚴(yán)重的卷積層,提出一種基于Winograd算法的FPGA加速引擎,提高模型檢測實(shí)時(shí)性,通過軟硬件協(xié)同設(shè)計(jì),從硬件加速器與軟件網(wǎng)絡(luò)輕量化兩個(gè)角度進(jìn)行聯(lián)合優(yōu)化,實(shí)現(xiàn)輕量化、加速性能及復(fù)雜場景下準(zhǔn)確性三者之間的平衡。在Xilinx FPGA嵌入式平臺的實(shí)驗(yàn)結(jié)果表明,本文方法檢測準(zhǔn)確率達(dá)到93.5%,當(dāng)工作頻率為100MHz時(shí),單幅圖像檢測時(shí)間為80.232ms,滿足實(shí)時(shí)性需求。

    Abstract:

    In the automatic assembly line of agricultural machinery, the on-chip resources of its embedded control platform are extremely limited, and the parameter amount of the convolutional neural network-based deep learning detection system is too large, which is difficult to be directly transplanted to the embedded platform. Therefore, a deep learning real-time detection method based on improved ResNet18-SSD (single shot multi-box detector) and field programmable gate array (FPGA) acceleration engine was proposed. In order to improve the accuracy of the detection model while reducing the number of parameters, a deep learning fast detection model based on ResNet18-SSD was proposed, which utilized the optimized and improved ResNet18 network to replace the VGG16 predecessor network of the SSD model, and introduced a multi-branch isomorphic structure and an asymmetric parallel residual structure, so as to adapt to the complex scenes such as occlusion, dim light; and in the case of meeting the detection accuracy requirements, a dynamic fixed-variance network was used to meet the detection accuracy requirements. Under the condition of meeting the requirements of detection accuracy, the dynamic fixed-point quantization was adopted to reduce the model data volume to improve the execution efficiency of the detection model. Aiming at improving the convolutional layer in the ResNet18-SSD model, which consumed serious resources, an FPGA acceleration engine based on the Winograd algorithm was proposed to improve the real-time performance of the model detection, and through the software-hardware co-design, joint optimization was carried out from the perspectives of the hardware gas pedal and the lightweighting of the software network, so as to achieve a balance between the lightweighting, acceleration performance, and accuracy in the complex scene. Experimental results on the Xilinx FPGA embedded platform showed that the detection accuracy of the proposed method reached 93.5%, and the detection time of a single image under the operating frequency of 100MHz was 80.232ms, which met the real-time demand.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余永維,陳天皓,杜柳青,方榮.基于深度學(xué)習(xí)加速模型的雜亂目標(biāo)實(shí)時(shí)視覺檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):617-624. YU Yongwei, CHEN Tianhao, DU Liuqing, FANG Rong. Real Time Visual Detection for Cluttered Targets Based on Deep Learning Acceleration Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):617-624.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼