ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于OD_SeGAN的斷奶前仔豬實例分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD2000800)


Instance Segmentation Method of Pre-weaning Piglets Based on OD_SeGAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在豬只智慧養(yǎng)殖中,豬只實例分割方法是實現(xiàn)豬只自動化檢測的關鍵技術之一,但在實際分割場景中,存在豬只遮擋粘連等現(xiàn)象,易導致分割困難。針對產(chǎn)房中仔豬分割困難問題,本文提出一種基于YOLO v5s和GAN(Generative adversarial network)的實例分割模型OD_SeGAN。該方法通過目標檢測算法YOLO v5s提取出仔豬目標,并輸入至語義分割算法GAN實現(xiàn)分割,并使用空洞卷積替換GAN中的普通卷積,擴大網(wǎng)絡感受野;其次,使用擠壓-激勵注意力機制模塊,增強模型對仔豬全局特征的學習能力,提高模型的分割精度。實驗結果表明,OD_SeGAN在測試集上IoU為88.6%,分別比YOLO v5s_Seg、Cascade_Mask_RCNN、Mask_RCNN、SOLO、Yolact高3.4、3.3、4.1、9.7、8.1個百分點。將OD_SeGAN應用于仔豬窩均質(zhì)量估測任務中,測得仔豬窩均質(zhì)量和仔豬像素點數(shù)之間皮爾遜相關系數(shù)為0.956。OD_SeGAN在實際生產(chǎn)場景中具有良好的仔豬分割性能,可為仔豬窩均質(zhì)量估測等后續(xù)研究提供技術基礎。

    Abstract:

    In the research on smart pig breeding, the pig instance segmentation method is one of the key technologies to realize automatic detection of pigs. However, in actual segmentation scenarios, there is occlusion and adhesion phenomenon, which makes pig segmentation difficult. Aiming at the difficulty of piglet segmentation in the farrowing room, an instance segmentation model OD_SeGAN was proposed based on YOLO v5s and generative adversarial network(GAN). This method extracted the piglet target through the target detection algorithm YOLO v5s, and inputed it into the semantic segmentation algorithm GAN to achieve segmentation, and used dilated convolution to replace the ordinary convolution in GAN to expand the network receptive field; secondly, a squeeze-incentive attention mechanism was used module to enhance the model’s ability to learn the global characteristics of piglets and improve the model’s segmentation accuracy. Experimental results showed that OD_SeGAN’s IoU on the test set was 88.6%, which was 3.4, 3.3, 4.1, 9.7, and 8.1 percentage points higher than YOLO v5s_Seg, Cascade_Mask_RCNN, Mask_RCNN, SOLO, and Yolact, respectively. OD_SeGAN was applied to the piglet litter average weight estimation task, and the Pearson correlation coefficient between the piglet litter average weight and the number of piglet pixels was measured to be 0.956. The OD_SeGAN proposed had good piglet segmentation performance in actual production scenarios, and can provide a technical basis for subsequent research such as piglet litter weight estimation.

    參考文獻
    相似文獻
    引證文獻
引用本文

李鵬,沈明霞,劉龍申,陳金鑫,薛鴻翔,衡熙,孫玉文.基于OD_SeGAN的斷奶前仔豬實例分割方法[J].農(nóng)業(yè)機械學報,2025,56(5):482-491. LI Peng, SHEN Mingxia, LIU Longshen, CHEN Jinxin, XUE Hongxiang, HENG Xi, SUN Yuwen. Instance Segmentation Method of Pre-weaning Piglets Based on OD_SeGAN[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):482-491.

復制
相關視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼