ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于OD_SeGAN的斷奶前仔豬實(shí)例分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD2000800)


Instance Segmentation Method of Pre-weaning Piglets Based on OD_SeGAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在豬只智慧養(yǎng)殖中,豬只實(shí)例分割方法是實(shí)現(xiàn)豬只自動(dòng)化檢測(cè)的關(guān)鍵技術(shù)之一,但在實(shí)際分割場(chǎng)景中,存在豬只遮擋粘連等現(xiàn)象,易導(dǎo)致分割困難。針對(duì)產(chǎn)房中仔豬分割困難問(wèn)題,本文提出一種基于YOLO v5s和GAN(Generative adversarial network)的實(shí)例分割模型OD_SeGAN。該方法通過(guò)目標(biāo)檢測(cè)算法YOLO v5s提取出仔豬目標(biāo),并輸入至語(yǔ)義分割算法GAN實(shí)現(xiàn)分割,并使用空洞卷積替換GAN中的普通卷積,擴(kuò)大網(wǎng)絡(luò)感受野;其次,使用擠壓-激勵(lì)注意力機(jī)制模塊,增強(qiáng)模型對(duì)仔豬全局特征的學(xué)習(xí)能力,提高模型的分割精度。實(shí)驗(yàn)結(jié)果表明,OD_SeGAN在測(cè)試集上IoU為88.6%,分別比YOLO v5s_Seg、Cascade_Mask_RCNN、Mask_RCNN、SOLO、Yolact高3.4、3.3、4.1、9.7、8.1個(gè)百分點(diǎn)。將OD_SeGAN應(yīng)用于仔豬窩均質(zhì)量估測(cè)任務(wù)中,測(cè)得仔豬窩均質(zhì)量和仔豬像素點(diǎn)數(shù)之間皮爾遜相關(guān)系數(shù)為0.956。OD_SeGAN在實(shí)際生產(chǎn)場(chǎng)景中具有良好的仔豬分割性能,可為仔豬窩均質(zhì)量估測(cè)等后續(xù)研究提供技術(shù)基礎(chǔ)。

    Abstract:

    In the research on smart pig breeding, the pig instance segmentation method is one of the key technologies to realize automatic detection of pigs. However, in actual segmentation scenarios, there is occlusion and adhesion phenomenon, which makes pig segmentation difficult. Aiming at the difficulty of piglet segmentation in the farrowing room, an instance segmentation model OD_SeGAN was proposed based on YOLO v5s and generative adversarial network(GAN). This method extracted the piglet target through the target detection algorithm YOLO v5s, and inputed it into the semantic segmentation algorithm GAN to achieve segmentation, and used dilated convolution to replace the ordinary convolution in GAN to expand the network receptive field; secondly, a squeeze-incentive attention mechanism was used module to enhance the model’s ability to learn the global characteristics of piglets and improve the model’s segmentation accuracy. Experimental results showed that OD_SeGAN’s IoU on the test set was 88.6%, which was 3.4, 3.3, 4.1, 9.7, and 8.1 percentage points higher than YOLO v5s_Seg, Cascade_Mask_RCNN, Mask_RCNN, SOLO, and Yolact, respectively. OD_SeGAN was applied to the piglet litter average weight estimation task, and the Pearson correlation coefficient between the piglet litter average weight and the number of piglet pixels was measured to be 0.956. The OD_SeGAN proposed had good piglet segmentation performance in actual production scenarios, and can provide a technical basis for subsequent research such as piglet litter weight estimation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李鵬,沈明霞,劉龍申,陳金鑫,薛鴻翔,衡熙,孫玉文.基于OD_SeGAN的斷奶前仔豬實(shí)例分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):482-491. LI Peng, SHEN Mingxia, LIU Longshen, CHEN Jinxin, XUE Hongxiang, HENG Xi, SUN Yuwen. Instance Segmentation Method of Pre-weaning Piglets Based on OD_SeGAN[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):482-491.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼