ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合深度信息與運動趨勢的羊只多目標跟蹤方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省秦創(chuàng)原“科學家+工程師”建設項目(2022KXJ-67)


Sheep Multi-object Tracking Method Integrating Depth Information and Motion Trends
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    近年來,隨著羊只養(yǎng)殖向大規(guī)模和精細化的方向發(fā)展,羊場對智能化管理的需求日益增加。因此,精準的個體識別和行為監(jiān)測變得尤為重要,對多目標跟蹤(Multiple object tracking, MOT)算法的準確性提出了更高要求。然而,現(xiàn)有的MOT算法在目標遮擋和動態(tài)場景下的性能仍不理想。本文提出兩種跟蹤線索:深度調制交并比(Depth modulated intersection over union, DIoU)和軌跡方向建模(Tracklet direction modeling, TDM),旨在補充交并比(Intersection over union, IoU)線索,提高多目標跟蹤的精準度和魯棒性。DIoU線索通過引入目標的深度信息改進了傳統(tǒng)的IoU計算方法。TDM聚焦于目標的運動趨勢,預測其未來的移動方向。本文將DIoU和TDM跟蹤線索集成到BoT-SORT算法中,形成改進的多目標跟蹤算法。在兩個私有數(shù)據(jù)集上,改進算法相比基線方法,MOTA(Multiple object tracking accuracy)指標分別提高1.6、1.7個百分點,IDF1(Identification F1 score)指標分別提高1.9、1.0個百分點。結果顯示,改進算法在復雜場景中的跟蹤連續(xù)性和準確性顯著提升。

    Abstract:

    In recent years, the application of information technology in sheep farming has become increasingly sophisticated, necessitating more accurate individual identification and behavior monitoring. This, in turn, has placed higher demands on the accuracy of multiple object tracking (MOT) algorithms, which formed the foundation of these applications. However, existing MOT algorithms often underperformed in scenarios involving object occlusion and dynamic environments. Two novel tracking cues, depth modulated IoU (DIoU) and tracklet direction modeling (TDM), was proposed, aiming at enhancing the precision and robustness of multiple object tracking by supplementing the intersection over union (IoU) cue. DIoU improved the traditional IoU calculation by incorporating depth information of the objects. TDM focused on the movement trends of targets, predicting their future directions based on their historical movement patterns. The DIoU and TDM strategies were integrated into the BoT-SORT algorithm, resulting in an improved multiple object tracking algorithm. Evaluations on two datasets showed that the enhanced algorithm increased the multiple object tracking accuracy (MOTA) by 1.6 percentage points and 1.7 percentage points and the identification F1 score (IDF1) by 1.9 percentage points and 1.0 percentage points, respectively, compared with baseline methods. These results indicated that the improved algorithm significantly enhanced tracking continuity and accuracy in complex scenarios. This research provided insights and methods for multiple object tracking technology, holding significant implications for practical applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

王美麗,楊恩德.融合深度信息與運動趨勢的羊只多目標跟蹤方法[J].農(nóng)業(yè)機械學報,2025,56(5):475-481,491. WANG Meili, YANG Ende. Sheep Multi-object Tracking Method Integrating Depth Information and Motion Trends[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):475-481,491.

復制
相關視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼