ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于關(guān)鍵點和步行特征的豬只跛行檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣東省重點領(lǐng)域研發(fā)計劃項目(2023B0202140001)和國家重點研發(fā)計劃項目(2021YFD2000802)


Pig Lameness Detecting Method Based on Key Points and Walking Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    豬只跛行問題為豬場的生產(chǎn)和管理帶來了挑戰(zhàn),因此準確檢測豬只跛行情況至關(guān)重要。目前豬場主要依賴人工觀察和記錄,效率低耗時長,且可能存在主觀誤差。鑒于此,提出一種基于關(guān)鍵點和步行特征的豬只跛行檢測方法。首先,定義并確定了豬只的關(guān)鍵點信息,關(guān)鍵點包括豬只的腿、膝蓋、背部等重要部位。基于關(guān)鍵點,采用改進YOLO v8n-pose模型進行檢測。該模型在YOLO v8n-pose的基礎(chǔ)上,在頸部引入BiFPN雙向特征金字塔網(wǎng)絡(luò)進行多尺度特征融合,同時在骨干網(wǎng)絡(luò)中引入RepGhost網(wǎng)絡(luò),以降低特征提取網(wǎng)絡(luò)的參數(shù)量和浮點運算量。然后利用檢測出的關(guān)鍵點坐標計算豬只的步長、膝蓋彎曲程度和背部曲率等步行特征,并將這些特征輸入到K最近鄰算法進行跛行與非跛行的分類。實驗結(jié)果表明,改進YOLO v8n-pose模型平均精度均值(mAP)達到92.4%,比原始YOLO v8n-pose模型提高4.2個百分點。與其他關(guān)鍵點檢測模型(HRNet-w32、Lite-HRNet、ResNet50、ViPNAS和Hourglass)相比,mAP分別提高10.2、11.6、14.2、11.8、12.5個百分點。K近鄰算法在豬只跛行測試集上的檢測精度為81.7%,比BP算法、Decision Tree算法和SVM算法分別提高1.5、11.3、6.5個百分點。以上結(jié)果表明,本文提出的豬只跛行檢測方法可行,能夠為豬場檢測提供技術(shù)支持。

    Abstract:

    The problem of lameness in pigs presents significant challenges to the production and management of pig farms, making accurate detection of pig lameness crucial. Currently, pig farms primarily rely on manual observation and recording, which is inefficient, time-consuming, and prone to subjective judgment errors. In light of this, a method for detecting pig lameness based on key points and walking characteristics was proposed. Firstly, key point information for pigs was defined and determined, including critical parts such as the legs, knees, and back. Based on these key points, an improved YOLO v8n-pose model was employed for detection. This model built upon the original YOLO v8n-pose by introducing a bidirectional feature pyramid network (BiFPN) at the neck for multi-scale feature fusion and incorporating a RepGhost network into the backbone to reduce the parameter count and computational complexity of the feature extraction network. Then using the coordinates of the detected key points, walking characteristics such as stride length, knee bending degree, and back curvature were calculated. These features were inputed into a K-nearest neighbors (KNN) algorithm to classify pigs as lame or non-lame. Experimental results showed that the improved YOLO v8n-pose model achieved a mean average precision (mAP) of 92.4%, which was 4.2 percentage points higher than the detection accuracy of the original YOLO v8n-pose model. Compared with other key point detection models (HRNet-w32, Lite-HRNet, ResNet50, ViPNAS, and Hourglass), the mAP was improved by 10.2, 11.6, 14.2, 11.8 and 12.5 percentage points, respectively. The KNN algorithm achieved a detection accuracy of 81.7% on the pig lameness test set, which was 1.5, 11.3 and 6.5 percentage points higher than that of the BP algorithm, Decision Tree algorithm, and SVM algorithm, respectively. These results demonstrated that the proposed method for detecting pig lameness was feasible and can provide technical support for pig farm detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊秋妹,黃森鵬,肖德琴,惠向陽,黃一桂,李文剛.基于關(guān)鍵點和步行特征的豬只跛行檢測方法[J].農(nóng)業(yè)機械學報,2025,56(5):466-474. YANG Qiumei, HUANG Senpeng, XIAO Deqin, HUI Xiangyang, HUANG Yigui, LI Wen’gang. Pig Lameness Detecting Method Based on Key Points and Walking Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):466-474.

復制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼