ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v5-pose的群養(yǎng)生豬體尺自動測量方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農業(yè)農村部:國家現(xiàn)代農業(yè)產業(yè)技術體系項目(CARS-35)


Automatic Measurement Method of Body Size of Group-raised Pigs Based on Improved YOLO v5-pose
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對群養(yǎng)生豬體尺自動測量中體尺測點難以高效和精確提取的問題,提出一種基于改進YOLO v5-pose的群養(yǎng)生豬體尺自動測量方法。在YOLO v5-pose主干網(wǎng)絡中融合卷積塊注意力模塊(Convolutional block attention module, CBAM),更好地捕捉到測點相關特征;將Neck層的C3傳統(tǒng)模塊替換為C3Ghost輕量模塊,降低模型參數(shù)量和內存占用量;在模型Head層引入DyHead(Dynamic head)目標檢測頭,提升模型對測點位置的表征能力。結果表明,改進模型的測點檢測平均精度均值為92.6%,參數(shù)量為6.890×106,內存占用量為14.1MB,與原始YOLO v5-pose模型相比,平均精度均值增加2.1個百分點,參數(shù)量和內存占用量分別減少2.380×105、0.4MB。與當前經(jīng)典模型YOLO v7-pose、YOLO v8-pose、RTMPose(Real-time multi-person pose estimation based on mmpose)和CenterNet相比,該模型的召回率和平均精度均值更優(yōu)且更輕量化。在2400幅群養(yǎng)生豬圖像數(shù)據(jù)集上進行試驗,結果表明,該方法測得體長、體寬、臀寬、體高和臀高的平均絕對誤差分別為4.61、5.87、6.03、0.49、0.46cm,平均相對誤差分別為2.69%、11.53%、12.29%、0.90%和0.76%。綜上所述,本文方法提高了體尺測點檢測精度,降低了模型復雜度,取得了更精確的體尺測量結果,為群養(yǎng)環(huán)境下生豬體尺自動測量提供了一種有效的技術手段。

    Abstract:

    Aiming at the problem that it is difficult to extract body measurement points efficiently and accurately in the automatic measurement of body size of group-raised pigs, an automatic measurement method of body size of group-raised pigs based on improved YOLO v5-pose was proposed. Firstly, the convolutional block attention module (CBAM) was integrated into the YOLO v5-pose backbone network to better capture the relevant features of the measurement points. Then the C3 traditional module of the Neck layer was replaced with the C3Ghost lightweight module to reduce the number of model parameters and memory usage. Finally, the dynamic head (DyHead) target detection head was introduced in the Head layer to enhance the model’s ability to represent the position of the measurement points. The results showed that the average accuracy of the improved model was 92.6%, the number of parameters was 6.890×106, and the memory usage was 14.1MB. Compared with the original YOLO v5-pose model, the average accuracy was increased by 2.1 percentage points, and the number of parameters and memory usage were decreased by 2.380×105 and 0.4MB, respectively. Compared with the current classic models YOLO v7-pose, YOLO v8-pose, real-time multi-person pose estimation based on mmpose (RTMPose) and CenterNet, this model had better recall rate and average precision and was more lightweight. Experiments were conducted on a dataset of 2400 group-raised pigs images. The results showed that the average absolute errors of the body length, body width, hip width, body height and hip height measured by this method were 4.61cm, 5.87cm, 6.03cm, 0.49cm and 0.46cm, respectively, and the average relative errors were 2.69%, 11.53%, 12.29%, 0.90% and 0.76%, respectively. In summary, the method improved the detection accuracy of body size measurement points, reduced the complexity of the model, and achieved more accurate body size measurement results, providing an effective technical means for the automatic measurement of body size of pigs in group-raising environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉剛,曾雪婷,劉曉文,李濤,丁向東,米陽.基于改進YOLO v5-pose的群養(yǎng)生豬體尺自動測量方法[J].農業(yè)機械學報,2025,56(5):455-465. LIU Gang, ZENG Xueting, LIU Xiaowen, LI Tao, DING Xiangdong, MI Yang. Automatic Measurement Method of Body Size of Group-raised Pigs Based on Improved YOLO v5-pose[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):455-465.

復制
相關視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼