ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO 11的多尺度板栗果實識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

湖北省重點研發(fā)計劃項目(2020BED027)和湖北省自然科學(xué)基金項目(2023AFB871)


Multi-scale Chestnut Detection Method Based on Improved YOLO 11 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決現(xiàn)階段自然條件下板栗目標(biāo)尺度不一帶來的檢測局限性,本文基于改進(jìn)YOLO 11模型提出一種多尺度板栗果實識別方法YOLO 11-MCS。提出了多尺度關(guān)鍵特征聚合模塊(MKFA),并將其引入C3k2模塊,構(gòu)建C3k2-MKFA特征提取模塊,有效捕捉不同尺度特征信息;提出了CGAFPN網(wǎng)絡(luò),通過內(nèi)容引導(dǎo)注意力模塊引入小目標(biāo)檢測層,彌補了原生算法在多尺度、小目標(biāo)檢測中存在的不足;提出了共享卷積分離批量歸一化檢測頭(SCSB),采用共享卷積和分離批量歸一化結(jié)構(gòu),實現(xiàn)跨尺度特征高效提取,增強了不同尺度特征一致性。試驗結(jié)果表明,改進(jìn)模型板栗識別準(zhǔn)確率為88.2%,召回率為79.2%,平均精度為87.2%,相較于原始YOLO 11s模型,準(zhǔn)確率、召回率、平均精度分別提升0.8、5.9、5.5個百分點。采用通道式特征蒸餾后模型平均精度為84.7%,模型內(nèi)存占用量為6.0MB,經(jīng)Infer推理庫在Jetson Nano上部署后,檢測時間為23ms/幅,滿足板栗識別要求。

    Abstract:

    Aiming to address the current limitations in detecting chestnut of varying scales under natural conditions, an innovative multi-scale chestnut detection method was introduced, YOLO 11-MCS, based on an improved YOLO 11 model. Firstly, a novel multi-scale key feature aggregation (MKFA) module was proposed, which was integrated into the C3k2 module to form the C3k2-MKFA feature extraction module, effectively capturing features at different scales, enhancing multi-scale feature extraction capabilities. Subsequently, the CGAFPN network was introduced, which incorporated a small object detection layer through a content-guided attention module and increased the contribution proportion of chestnut small object to multi-scale object, overcoming the deficiencies of the original algorithm in multi-scale and small object detection. Finally, a shared convolution separated batch normalization detection head (SCSB) was presented, utilizing shared convolution and separated batch normalization structures to efficiently extract cross-scale features and enhance feature consistency across different scales, effectively improved the performance of multi-scale object detection. Experimental results demonstrated that the improved model achieved a chestnut detection precision of 88.2%, a recall rate of 79.2%, and an average precision of 87.2%, which had improvements of 0.8, 5.9, and 5.5 percentage points, respectively, compared with the original YOLO 11 network. The model with channel-wise feature distillation achieved an average precision of 84.7%, with a model size of 6.0MB. When deployed on the Jetson Nano using the Infer inference library, the detection speed was 23ms per image, meeting the requirements for chestnut detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李茂,肖洋軼,宗望遠(yuǎn).基于改進(jìn)YOLO 11的多尺度板栗果實識別方法[J].農(nóng)業(yè)機械學(xué)報,2025,56(5):443-454. LI Mao, XIAO Yangyi, ZONG Wangyuan. Multi-scale Chestnut Detection Method Based on Improved YOLO 11 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):443-454.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼