ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v8的復雜溫室環(huán)境黃瓜果實分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市農(nóng)業(yè)科技創(chuàng)新項目(2023-02-08-00-12-F04621)和國家自然科學基金項目(61762013)


Improved YOLO v8 Method for Cucumber Fruit Segmentation in Complex Greenhouse Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    黃瓜果實的檢測與分割對于表型分析和黃瓜生長管理至關(guān)重要。然而,在復雜溫室環(huán)境下,果實往往與莖葉相互遮擋,且果實與背景顏色相似,導致傳統(tǒng)方法在復雜環(huán)境下難以準確識別果實邊界并實現(xiàn)高效分割。為此,提出了一種基于改進YOLO v8的黃瓜果實分割方法。該方法引入可變形卷積(Deformable convolution network v4,DCNv4)增強模型空間適應(yīng)性;同時采用RepNCSPELAN4模塊串聯(lián)額外的C2F模塊,細化特征提取與融合;從而提升了模型在復雜溫室環(huán)境下對黃瓜果實圖像的分割性能。實驗結(jié)果顯示,在玻璃溫室和塑料連棟大棚兩個實驗場景中的多個類別上均有出色表現(xiàn)。其中,在玻璃溫室場景中的精確率為96.3%,召回率為93.1%,平均精度均值mAP50為96.2%,mAP50-95為85.3%;在塑料大棚場景中的精確率為86.8%,召回率為81.9%,平均精度均值mAP50為90.0%,mAP50-95為77.0%。本研究提出的改進方法在處理邊界、多重遮擋和多尺度分割方面具有更強的魯棒性和泛化性,使模型能適應(yīng)復雜性不同的多樣化種植環(huán)境而準確分割黃瓜果實。精確的果實圖像分割有助于表型參數(shù)的獲取,為黃瓜果實的表型分析提供了可靠的技術(shù)支持,從而促進農(nóng)業(yè)表型機器人的應(yīng)用。

    Abstract:

    The detection and segmentation of cucumber fruits are crucial for phenotypic analysis and the management of cucumber growth. However, in complex greenhouse environments, fruits are often occluded by stems and leaves, and their color may be similar to the background, making it difficult for traditional methods to accurately identify fruit boundaries and achieve efficient segmentation. To address this issue, an improved YOLO v8-based method for cucumber fruit segmentation was proposed. This method incorporated deformable convolution network v4 (DCNv4) to enhance the model’s spatial adaptability and utilized the RepNCSPELAN4 module in combination with an additional C2F module to refine feature extraction and fusion, thereby improving the model’s segmentation performance for cucumber fruit images in complex greenhouse environments. Experimental results showed outstanding performance across multiple categories in two experimental settings: a glass greenhouse and a plastic greenhouse. Specifically, in the glass greenhouse scenario, the model achieved a precision of 96.3%, recall of 93.1%, mean average precision (mAP50) of 96.2%, and mAP50-95 of 85.3%. In the plastic greenhouse scenario, the precision was 86.8%, recall was 81.9%, mAP50 was 90.0%, and mAP50-95 was 77.0%. The proposed method demonstrated stronger robustness and generalization in handling boundary issues, multiple occlusions, and multi-scale segmentation, enabling the model to adapt to diverse and complex cultivation environments and accurately segment cucumber fruits. Accurate fruit image segmentation facilitated the acquisition of phenotypic parameters and provides reliable technical support for further phenotypic analysis of cucumber fruits, thereby promoting the application of agricultural phenotyping robots and the intelligent development of agricultural production.

    參考文獻
    相似文獻
    引證文獻
引用本文

夏天,謝純,李琳一,陸聲鏈,錢婷婷.基于改進YOLO v8的復雜溫室環(huán)境黃瓜果實分割方法[J].農(nóng)業(yè)機械學報,2025,56(5):433-442. XIA Tian, XIE Chun, LI Linyi, LU Shenglian, QIAN Tingting. Improved YOLO v8 Method for Cucumber Fruit Segmentation in Complex Greenhouse Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):433-442.

復制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼