ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)MBS-YOLO v8的火龍果目標(biāo)檢測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

海南省科技人才創(chuàng)新項目(KJRC2023D38)和海南大學(xué)協(xié)同創(chuàng)新中心項目(XTCX2022STC16)


Pitaya Fruit Target Detection and Localization Method Based on Improved MBS-YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決因火龍果果實尺寸不一、數(shù)量眾多而造成的重疊遮擋問題,本文提出了一種基于YOLO v8模型的多尺度加權(quán)特征融合網(wǎng)絡(luò)(MBS-YOLO v8)。在特征提取模塊中加入擠壓和激勵網(wǎng)絡(luò)(Squeeze-and-excitation attention,SEAttention)機(jī)制,以增強網(wǎng)絡(luò)捕捉關(guān)鍵細(xì)節(jié)能力,解決小目標(biāo)檢測問題。提出一種多尺度加權(quán)融合網(wǎng)絡(luò)(Multi-scale weighted fusion network,MWConv)用于生成具有不同感受野的特征圖,增強了圖像中全局特征的捕獲能力。試驗結(jié)果表明,MBS-YOLO v8準(zhǔn)確率為92.5%,召回率為90.1%,平均精度均值mAP50為94.7%。與YOLO v8n算法相比,MBS-YOLO v8準(zhǔn)確率、召回率和mAP50分別提高2.1、5.9、2個百分點。本文MBS-YOLO v8〖JP+2〗模型展現(xiàn)出高度的魯棒性,該方法有效地將全局特征信息與低維局部特征相結(jié)合,從而提高了模型對圖像內(nèi)容的理解,能夠應(yīng)對與重疊遮擋和小目標(biāo)相關(guān)的挑戰(zhàn),為火龍果及其他同類型目標(biāo)檢測提供了改進(jìn)思路。

    Abstract:

    Aiming to address the issue of overlapping occlusion caused by the varying sizes and large quantities of dragon fruit, a multi-scale weighted feature fusion network (MBS-YOLO v8) was proposed based on the YOLO v8 model. Firstly, the squeeze-and-excitation attention (SEAttention) mechanism was incorporated into the feature extraction module to enhance the network’s ability to capture critical details, thereby addressing the challenge of small object detection. Secondly, a multi-scale weighted fusion network (MWConv) was introduced to generate feature maps with varying receptive fields, improving the capture of global features within images. Finally, experimental results demonstrated that MBS-YOLO v8 achieved an accuracy of 92.5%, a recall rate of 90.1%, and a mean average precision (mAP50) of 94.7%. Compared with the YOLO v8n algorithm, MBS-YOLO v8 showed improvements of 2.1 percentage points, 5.9 percentage points, and 2 percentage points in accuracy, recall, and mAP50, respectively. The proposed MBS-YOLO v8 model exhibited high robustness, effectively integrating global feature information with low-dimensional local features to enhance the model’s understanding of image content. This approach effectively addressed challenges related to overlapping occlusion and small object detection, providing an improved methodology for detecting dragon fruit and other similar targets.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉進(jìn)一,晏伏山,董赫,付麗榮,付威,陳雨.基于改進(jìn)MBS-YOLO v8的火龍果目標(biāo)檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(5):425-432. LIU Jinyi, YAN Fushan, DONG He, FU Lirong, FU Wei, CHEN Yu. Pitaya Fruit Target Detection and Localization Method Based on Improved MBS-YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):425-432.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼