ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8n的非結(jié)構(gòu)環(huán)境下杭白菊檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32301715、U23A20175)、全省農(nóng)業(yè)智能感知與機(jī)器人重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題基金項(xiàng)目(2025QSZD2505)和浙江理工大學(xué)校內(nèi)科研啟動(dòng)基金項(xiàng)目(23242167-Y)


Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在非結(jié)構(gòu)環(huán)境下,由于杭白菊的簇狀生長(zhǎng)特性導(dǎo)致相互遮擋嚴(yán)重,使得杭白菊檢測(cè)算法的檢測(cè)精度較低。針對(duì)該問(wèn)題,提出一種改進(jìn)YOLO v8n的杭白菊檢測(cè)模型Hwc-YOLO v8n(Hangzhou white chrysanthemum-YOLO v8n)。首先,提出通過(guò)增加標(biāo)簽的方式,將實(shí)際需求的雙類別標(biāo)簽改變?yōu)槿悇e,提升模型對(duì)杭白菊各個(gè)花期的關(guān)鍵性特征的精細(xì)化檢測(cè)能力;其次,在主干網(wǎng)絡(luò)中設(shè)計(jì)一種動(dòng)態(tài)特征提取模塊(C2f-Dynamic),以加強(qiáng)模型對(duì)被遮擋目標(biāo)特征缺失情況的動(dòng)態(tài)適應(yīng),并在檢測(cè)頭部分增加160像素×160像素的檢測(cè)頭,使得模型具備針對(duì)小目標(biāo)檢測(cè)的能力;最后,采用角度懲罰度量的損失(SIoU)優(yōu)化邊界框損失函數(shù),提升了模型檢測(cè)精度和泛化能力。模塊位置試驗(yàn)和熱力圖試驗(yàn)表明,C2f-Dynamic模塊能動(dòng)態(tài)適應(yīng)遮擋目標(biāo)的特征變化。改進(jìn)后的Hwc-YOLO v8n模型對(duì)遮擋杭白菊識(shí)別的平均精度均值提升了1.7個(gè)百分點(diǎn),召回率均值提高了0.88個(gè)百分點(diǎn)。模型消融和對(duì)比試驗(yàn)結(jié)果表明,改進(jìn)后的Hwc-YOLO v8n模型相比于DETR、SSD、YOLO v5、YOLO v6和YOLO v7,對(duì)杭白菊的檢測(cè)效果更好。平均精度均值相較于DETR、SSD、YOLO v5、YOLO v6和YOLO v7分別提升了5.7、12.6、0.7、0.75、11.25個(gè)百分點(diǎn),召回率均值相較于YOLO v5和YOLO v7提升了2.15、1.4個(gè)百分點(diǎn),可為后續(xù)杭白菊智能化采收作業(yè)提供技術(shù)支撐。

    Abstract:

    In unstructured environments, the cluster growth characteristics of Hangzhou white chrysanthemum lead to severe mutual occlusion, reducing detection accuracy for chrysanthemum detection algorithms. To address this issue, an improved YOLO v8n detection model for Hangzhou white chrysanthemum, called Hangzhou white chrysanthemum-YOLO v8n (Hwc-YOLO v8n), was proposed. Firstly, the model’s ability was enhanced to finely detect critical, similar features of the chrysanthemum by increasing the label categories from two to three. Secondly, a dynamic feature extraction module (C2f-Dynamic) was designed in the backbone network to strengthen the model’s adaptive response to missing features in occluded targets. Additionally, a 160 pixel×160 pixel detection head was added to the detection head section, allowing the model to detect small targets more effectively. Finally, the angle penalty metric loss (SIoU) was adopted to optimize the bounding box loss function, improving both detection accuracy and generalization capability. Experimental results from module placement and heatmap analysis demonstrated that the C2f-Dynamic module can dynamically adapt to feature changes in occluded targets. The improved Hwc-YOLO v8n model achieved a 1.7 percentage points increase in mean average precision and a 0.88 percentage points increase in mean recall rate for the occluded Hangzhou white chrysanthemum. Ablation and comparison experiments showed that the improved Hwc-YOLO v8n outperformed DETR, SSD, YOLO v5, YOLO v6, and YOLO v7 in detection of the chrysanthemum. Specifically, compared with DETR, SSD, YOLO v5, YOLO v6, and YOLO v7, the mAP was improved by 5.7, 12.6, 0.7, 0.75, and 11.25 percentage points, respectively. The mR was increased by 2.15 percentage points and 1.4 percentage points compared with that of YOLO v5 and YOLO v7, respectively. The research result can provide a technical foundation for future intelligent harvesting of Hangzhou white chrysanthemum.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

喻陳楠,伍永紅,周杰,姚坤,郇曉龍,陳建能.基于改進(jìn)YOLO v8n的非結(jié)構(gòu)環(huán)境下杭白菊檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):405-414. YU Chennan, WU Yonghong, ZHOU Jie, YAO Kun, HUAN Xiaolong, CHEN Jianneng. Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):405-414.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼