ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v8n的非結(jié)構(gòu)環(huán)境下杭白菊檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32301715、U23A20175)、全省農(nóng)業(yè)智能感知與機器人重點實驗室開放課題基金項目(2025QSZD2505)和浙江理工大學校內(nèi)科研啟動基金項目(23242167-Y)


Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在非結(jié)構(gòu)環(huán)境下,由于杭白菊的簇狀生長特性導致相互遮擋嚴重,使得杭白菊檢測算法的檢測精度較低。針對該問題,提出一種改進YOLO v8n的杭白菊檢測模型Hwc-YOLO v8n(Hangzhou white chrysanthemum-YOLO v8n)。首先,提出通過增加標簽的方式,將實際需求的雙類別標簽改變?yōu)槿悇e,提升模型對杭白菊各個花期的關(guān)鍵性特征的精細化檢測能力;其次,在主干網(wǎng)絡中設計一種動態(tài)特征提取模塊(C2f-Dynamic),以加強模型對被遮擋目標特征缺失情況的動態(tài)適應,并在檢測頭部分增加160像素×160像素的檢測頭,使得模型具備針對小目標檢測的能力;最后,采用角度懲罰度量的損失(SIoU)優(yōu)化邊界框損失函數(shù),提升了模型檢測精度和泛化能力。模塊位置試驗和熱力圖試驗表明,C2f-Dynamic模塊能動態(tài)適應遮擋目標的特征變化。改進后的Hwc-YOLO v8n模型對遮擋杭白菊識別的平均精度均值提升了1.7個百分點,召回率均值提高了0.88個百分點。模型消融和對比試驗結(jié)果表明,改進后的Hwc-YOLO v8n模型相比于DETR、SSD、YOLO v5、YOLO v6和YOLO v7,對杭白菊的檢測效果更好。平均精度均值相較于DETR、SSD、YOLO v5、YOLO v6和YOLO v7分別提升了5.7、12.6、0.7、0.75、11.25個百分點,召回率均值相較于YOLO v5和YOLO v7提升了2.15、1.4個百分點,可為后續(xù)杭白菊智能化采收作業(yè)提供技術(shù)支撐。

    Abstract:

    In unstructured environments, the cluster growth characteristics of Hangzhou white chrysanthemum lead to severe mutual occlusion, reducing detection accuracy for chrysanthemum detection algorithms. To address this issue, an improved YOLO v8n detection model for Hangzhou white chrysanthemum, called Hangzhou white chrysanthemum-YOLO v8n (Hwc-YOLO v8n), was proposed. Firstly, the model’s ability was enhanced to finely detect critical, similar features of the chrysanthemum by increasing the label categories from two to three. Secondly, a dynamic feature extraction module (C2f-Dynamic) was designed in the backbone network to strengthen the model’s adaptive response to missing features in occluded targets. Additionally, a 160 pixel×160 pixel detection head was added to the detection head section, allowing the model to detect small targets more effectively. Finally, the angle penalty metric loss (SIoU) was adopted to optimize the bounding box loss function, improving both detection accuracy and generalization capability. Experimental results from module placement and heatmap analysis demonstrated that the C2f-Dynamic module can dynamically adapt to feature changes in occluded targets. The improved Hwc-YOLO v8n model achieved a 1.7 percentage points increase in mean average precision and a 0.88 percentage points increase in mean recall rate for the occluded Hangzhou white chrysanthemum. Ablation and comparison experiments showed that the improved Hwc-YOLO v8n outperformed DETR, SSD, YOLO v5, YOLO v6, and YOLO v7 in detection of the chrysanthemum. Specifically, compared with DETR, SSD, YOLO v5, YOLO v6, and YOLO v7, the mAP was improved by 5.7, 12.6, 0.7, 0.75, and 11.25 percentage points, respectively. The mR was increased by 2.15 percentage points and 1.4 percentage points compared with that of YOLO v5 and YOLO v7, respectively. The research result can provide a technical foundation for future intelligent harvesting of Hangzhou white chrysanthemum.

    參考文獻
    相似文獻
    引證文獻
引用本文

喻陳楠,伍永紅,周杰,姚坤,郇曉龍,陳建能.基于改進YOLO v8n的非結(jié)構(gòu)環(huán)境下杭白菊檢測方法[J].農(nóng)業(yè)機械學報,2025,56(5):405-414. YU Chennan, WU Yonghong, ZHOU Jie, YAO Kun, HUAN Xiaolong, CHEN Jianneng. Improved YOLO v8n for Detection of Hangzhou White Chrysanthemum in Unstructured Environments[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):405-414.

復制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼