ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于特征增強的農(nóng)業(yè)短文本語義智能匹配方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省教育廳基礎(chǔ)研究項目(LJKQZ20222458)和遼寧省科技計劃聯(lián)合計劃項目(2024-MSLH-399)


Exploration of Intelligent Semantic Matching Technique for Agricultural Short Texts Utilizing Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)業(yè)短文本數(shù)據(jù)特征詞語少、語義特征稀疏、冗余度高、價值密度低等問題,構(gòu)建了一種利用多尺度通道注意力算法融合多語義特征的語義匹配模型Font_MBAFF,以提升農(nóng)業(yè)短文本的語義匹配性能。首先利用漢字偏旁部首和四角號碼豐富短文本特征;然后利用多尺度卷積核通道注意力加權(quán)網(wǎng)絡(luò)MSCN和基于多頭自注意力的雙向長短期記憶網(wǎng)絡(luò)Multi_SAB分別從空間和時間提取語義特征;最后利用文本注意力融合機制TEXTAFF對多種特征進行智能融合。試驗結(jié)果表明,F(xiàn)ont_MBAFF模型可有效彌補短文本特征詞少的不足,優(yōu)化文本特征提取及特征融合,語義匹配正確率達到96.42%,與MaLSTM、BiLSTM、BiLSTM_Self-attention、TEXTCNN_Attention、Sentence-BERT等5種語義匹配模型相比優(yōu)勢明顯,正確率至少高2.07個百分點。

    Abstract:

    A deep learning model Font_MBAFF was proposed for the task of text similarity calculation, which was mainly applied to the matching of question pairs in Chinese agricultural short texts. In order to solve the problems of sparse semantic features and inadequate understanding of specialized vocabulary in agricultural short texts, it was firstly optimized in the feature representation stage. By introducing the unique font features of Chinese characters to expand the features, including side radicals and four corner numbers, thus enriching the semantic representation of features. In the feature extraction layer, the multi-scale convolution attention channel weighted network MSCN and the bidirectional long short-term memory network Multi_SAB based on multi-head self-attention mechanism were combined respectively, so that the model can further optimize the feature extraction from the spatial and temporal relationship sequences of semantic features. Finally, TEXTAFF, an improved attention fusion mechanism for text, was used in the intelligent fusion stage of features. The experimental results indicated that the Font_MBAFF model can effectively compensate for the lack of feature words in short texts, optimizing text feature extraction and feature fusion. The accuracy of semantic matching reached 96.42%. Compared with five other semantic matching models, including MaLSTM, BiLSTM, BiLSTM_Self-attention, TEXTCNN_Attention, and Sentence-BERT, the Font_MBAFF model demonstrated significant advantages, achieving a correctness rate that was at least 2.07 percentage points higher. Furthermore, the model proved resilient in experiments with datasets of different sizes, showing rapid response times during testing. Font_MBAFF deep learning model exceled at determining the similarity of Chinese agricultural short texts.

    參考文獻
    相似文獻
    引證文獻
引用本文

金寧,郭宇峰,渠麗娜,繆祎晟,吳華瑞.基于特征增強的農(nóng)業(yè)短文本語義智能匹配方法研究[J].農(nóng)業(yè)機械學(xué)報,2025,56(5):395-404. JIN Ning, GUO Yufeng, QU Li’na, MIAO Yisheng, WU Huarui. Exploration of Intelligent Semantic Matching Technique for Agricultural Short Texts Utilizing Feature Enhancement[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):395-404.

復(fù)制
相關(guān)視頻

分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼