ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Stacking集成的籽棉回潮率信息融合檢測(cè)方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002400)、兵團(tuán)科技計(jì)劃項(xiàng)目(2023AB014、2022DB003、2023ZD053)和兵團(tuán)研究生科研創(chuàng)新項(xiàng)目(BTYJXM-2024-K38)


Moisture Regain Detection of Seed Cotton Using Information Fusion Based on Stacking Ensemble
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)棉花采收和收購(gòu)環(huán)節(jié)中籽棉回潮率檢測(cè)工序復(fù)雜、受人工影響因素較大、檢測(cè)精度低的問題,提出了一種基于電阻技術(shù)的信息融合檢測(cè)方法。分別采集了環(huán)境溫濕度以及籽棉電阻、密度與回潮率,分析了籽棉回潮率隨環(huán)境溫濕度變化規(guī)律,討論了籽棉密度對(duì)籽棉電阻檢測(cè)的影響,確定了籽棉電阻與回潮率的關(guān)系。為了提高籽棉回潮率檢測(cè)的精確性和穩(wěn)定性,融合環(huán)境溫濕度及籽棉電阻和密度作為特征變量,將“環(huán)境參數(shù)-物理特性-電學(xué)特性”進(jìn)行數(shù)據(jù)關(guān)聯(lián);建立多元線性回歸、支持向量回歸、隨機(jī)森林等5類回歸模型,采用“模型競(jìng)爭(zhēng)-集成優(yōu)化”策略建立堆疊集成融合模型預(yù)測(cè)回潮率,實(shí)現(xiàn)了數(shù)據(jù)級(jí)和決策級(jí)的信息融合。結(jié)果表明,基于信息融合的堆疊集成模型為最優(yōu)回潮率預(yù)測(cè)模型,在測(cè)試數(shù)據(jù)集上其決定系數(shù)R2為0.994,平均絕對(duì)誤差(MAE)為0.104%,均方根誤差(RMSE)為0.151%,驗(yàn)證了信息融合檢測(cè)方法的可靠性。該方法可為棉花采收打包和收購(gòu)環(huán)節(jié)的回潮率檢測(cè)提供數(shù)據(jù)支撐。

    Abstract:

    Aiming to address the challenges in accurately assessing residual film coverage due to interference from multiple similar non-target scenarios, complex background textures in target scene images, and the small size, high fragmentation, and irregular contours of residual films during the operational process of residual film recovery machinery, a residual film recognition method was proposed based on vehicle-mounted imaging and deep convolutional neural networks. A multi-feature-enhanced SE-DenseNet-DC classification model was developed by integrating channel attention mechanisms before and after the nonlinear combination functions in each dense block of the DenseNet121 architecture, the model enhanced the weighting of effective feature channels. Additionally, the first-layer convolution of the original model was replaced with multi-scale cascaded dilated convolutions to expand the receptive field while preserving sensitivity to fine details, enabling effective extraction of target scene images. Furthermore, a CDC-TransUnet segmentation model was constructed with enhanced detail information and multi-scale feature fusion. In the encoder of the TransUnet framework, CBAM modules were introduced to capture finer and more precise global features. DAB modules were embedded in the skip connections to fuse multi-scale semantic information and bridge the semantic gap between encoder and decoder features. CCAF modules were then incorporated into the decoder to mitigate detail loss during upsampling, achieving precise segmentation of residual films against complex backgrounds in target scenes. Experimental results demonstrated that the SE-DenseNet-DC classification model achieved classification accuracy, precision, recall, and F1 score of 96.26%, 91.54%, 94.49%, and 92.83%, respectively, for target scene image classification. The CDC-TransUnet segmentation model achieved an average intersection over union (MIOU) of 77.17% for surface residual film segmentation. The coefficient of determination (R2) between the predicted and manually annotated film coverage was 0.92, with root mean square error (RMSE) of 0.23%, and average relative error of 2.95%. The average evaluation time was 0.54 s per image. This method demonstrated high accuracy and rapid processing capabilities for real-time monitoring and evaluation of residual film coverage post-recovery, providing robust technical support for quality assessment in residual film recovery operations.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

錢一夫,黃杰,方亮,段宏偉,張夢(mèng)蕓.基于Stacking集成的籽棉回潮率信息融合檢測(cè)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):159-166. QIAN Yifu, HUANG Jie, FANG Liang, DUAN Hongwei, ZHANG Mengyun. Moisture Regain Detection of Seed Cotton Using Information Fusion Based on Stacking Ensemble[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):159-166.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼