ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8的輕量化棉鈴識別模型與產(chǎn)量預(yù)測方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

新一代人工智能國家科技重大專項(2022ZD0115803)、國家重點(diǎn)研發(fā)計劃項目(2022YFD2002400)和兵團(tuán)科技攻關(guān)計劃項目(2023AB014)


Lightweight Cotton Boll Detection Model and Yield Prediction Method Based on Improved YOLO v8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    單株總鈴數(shù)是棉花重要的表型性狀之一,也是種植者估算棉花產(chǎn)量的重要參考因素。因此,從真實(shí)復(fù)雜的棉田圖像中高效準(zhǔn)確地識別棉花,對于確保棉花產(chǎn)業(yè)生產(chǎn)的經(jīng)濟(jì)效益和增強(qiáng)農(nóng)業(yè)管理至關(guān)重要。然而,許多現(xiàn)有的卷積神經(jīng)網(wǎng)絡(luò)在棉花識別方面優(yōu)先考慮準(zhǔn)確性,缺乏了對識別效率的關(guān)注。因此,以脫葉期新疆密植棉花為對象,提出了一種改進(jìn)的輕量化YOLO(IML-YOLO)棉鈴快速識別模型。IML-YOLO模型結(jié)合了輕量化卷積特征提取和YOLO模型實(shí)時快速識別的優(yōu)勢,構(gòu)建了一種全新的RepGhostCSPELAN輕量化模塊,同時為了降低由輕量化帶來的模型識別精度下降的問題,結(jié)合CAHSFPN特征融合提高對不同尺度棉鈴的識別精度,還提出了一種Focaler-MPDIoU損失函數(shù),有效提高了模型的識別精度。通過消融試驗和可解釋性分析證實(shí)了這些設(shè)計的有效性和顯著性。與基準(zhǔn)YOLO v8n模型相比,IML-YOLO模型在浮點(diǎn)運(yùn)算次數(shù)、模型內(nèi)存占用量和參數(shù)量方面分別顯著降低了32.1%、47.5%和50%,同時平均精確度提升了10.1個百分點(diǎn)。將IML-YOLO模型應(yīng)用于棉花產(chǎn)量預(yù)測,平均相對誤差為7.22%。該模型為棉鈴檢測算法與產(chǎn)量預(yù)測提供了新途徑,為棉花智能化管理提供了技術(shù)支持。

    Abstract:

    Cotton boll count is a critical phenotypic trait for estimating cotton yield and plays a vital role in precision agricultural management. However, accurately detecting cotton bolls in densely planted fields remained challenging due to complex backgrounds, occlusion, and varying illumination conditions. High-resolution UAV imagery was employed to capture cotton field scenes in a densely planted area of Xinjiang. A comprehensive dataset was developed through image segmentation and augmentation techniques, ensuring diverse representations of field conditions. To address the trade-off between detection accuracy and computational efficiency, an improved lightweight detection model IML-YOLO was proposed. The model integrated a novel GRGCE module that combined efficient ghost convolution with a RepGhostCSPELAN structure for feature extraction, a CAHSFPN feature fusion mechanism to enhance multi-scale representation, and a Focaler-MPDIoU loss function to refine localization accuracy. Extensive experiments demonstrated that IML-YOLO reduced computational complexity by 32.1%, decreased model size by 47.5%, and lowered parameter count by 50% compared with that of the baseline YOLO v8n, while boosting mean average precision by 10.1 percentage points. Furthermore, when applied to cotton yield prediction, the model achieved an average relative error of only 7.22%. These findings indicated that the proposed IML-YOLO model and yield prediction methodology can offer an effective solution for real-time cotton boll detection and significantly contribute to the advancement of intelligent cotton management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉祥,項若雪,班成龍,田敏,譚明天,黃凱文.基于改進(jìn)YOLO v8的輕量化棉鈴識別模型與產(chǎn)量預(yù)測方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(5):130-140. LIU Xiang, XIANG Ruoxue, BAN Chenglong, TIAN Min, TAN Mingtian, HUANG Kaiwen. Lightweight Cotton Boll Detection Model and Yield Prediction Method Based on Improved YOLO v8[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):130-140.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-01-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼