ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO 11n模型的棉花田間復雜環(huán)境障礙物檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD2002402)和中國機械工業(yè)集團有限公司重大科技專項(ZDZX2022-1)


Obstacle Detection Method for Complex Cotton Field Environments Based on Improved YOLO 11n Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對棉花田間復雜環(huán)境障礙物被遮擋致準確檢測難、邊緣設備算力有限的問題,本文提出一種基于改進YOLO 11n模型的田間障礙物檢測方法。首先,采用輕量級網絡StarNet作為主要特征提取網絡,并引入DBA模塊(Dynamic position bias attention block)重構C2PSA(Convolutional block with parallel spatial attention),以增強多尺度特征之間的交互能力;其次,使用KAGNConv(Kolmogorov-Arnold generalized network convolution)替換基線模型C3k2(Cross stage partial with kernel size 2)模塊中的瓶頸結構,實現(xiàn)對精細特征提取的同時,給予模型更高靈活性和可解釋性;最后,集成分離與增強注意力模塊(Separated and enhancement attention module, SEAM)至檢測頭,增強模型在遮擋場景中的檢測能力。試驗結果表明,改進模型YOLO 11n-SKS與基線模型相比精確率、召回率、mAP50、mAP50-95分別提升2.3、2.1、1.3、1.4個百分點,達到91.7%、88.3%、91.9%、62.3%,模型浮點數運算量僅為4.4×109FLOPs,模型參數量減少17.1%。本研究模型在性能和計算復雜度之間實現(xiàn)了較好的平衡,滿足棉田收獲作業(yè)場景中實時檢測需求,降低了部署邊緣設備算力要求,為采棉機自主安全作業(yè)提供技術支撐。

    Abstract:

    Aiming to address the challenges of accurate obstacle detection in complex cotton field environments due to occlusions and the computational limitations of edge devices, a field obstacle detection method based on improved YOLO 11n model was proposed. Firstly, the lightweight StarNet network was adopted as the primary feature extraction network, and the dynamic position bias attention block module (DBA) was introduced to reconstruct convolutional block with parallel spatial attention (C2PSA) to enhance multi-scale feature interaction. Secondly, Kolmogorov-Arnold generalized network convolution (KAGNConv) was used to replace the bottleneck structure in the cross stage partial with kernel size 2 module (C3k2) of the baseline model, enabling fine-grained feature extraction while improving model flexibility and interpretability. Finally, the separated and enhancement attention module (SEAM) was integrated into the detection head to enhance the model’s detection capability in occlusion scenarios. The experimental results showed that, compared with the baseline model, the improved YOLO 11n-SKS achieved increases of 2.3, 2.1, 1.3, and 1.4 percentage points in precision, recall, mAP50, and mAP50-95, reaching 91.7%, 88.3%, 91.9%, and 62.3%, respectively. The model’s floating-point operations were reduced to only 4.4×109 FLOPs, and the number of model parameters was decreased by 17.1%. This study achieved a favorable balance between performance and computational complexity, meeting the real-time detection requirements of cotton harvesting operations while lowering the computational demands for deployment on edge devices, thereby providing technical support for the autonomous and safe operation of cotton pickers.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓科立,王振坤,余永峰,劉淑平,韓樹杰,郝付平.基于改進YOLO 11n模型的棉花田間復雜環(huán)境障礙物檢測方法[J].農業(yè)機械學報,2025,56(5):111-120. HAN Keli, WANG Zhenkun, YU Yongfeng, LIU Shuping, HAN Shujie, HAO Fuping. Obstacle Detection Method for Complex Cotton Field Environments Based on Improved YOLO 11n Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):111-120.

復制
相關視頻

分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2025-02-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼