ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO 11n模型的棉花田間復(fù)雜環(huán)境障礙物檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002402)和中國(guó)機(jī)械工業(yè)集團(tuán)有限公司重大科技專(zhuān)項(xiàng)(ZDZX2022-1)


Obstacle Detection Method for Complex Cotton Field Environments Based on Improved YOLO 11n Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)棉花田間復(fù)雜環(huán)境障礙物被遮擋致準(zhǔn)確檢測(cè)難、邊緣設(shè)備算力有限的問(wèn)題,本文提出一種基于改進(jìn)YOLO 11n模型的田間障礙物檢測(cè)方法。首先,采用輕量級(jí)網(wǎng)絡(luò)StarNet作為主要特征提取網(wǎng)絡(luò),并引入DBA模塊(Dynamic position bias attention block)重構(gòu)C2PSA(Convolutional block with parallel spatial attention),以增強(qiáng)多尺度特征之間的交互能力;其次,使用KAGNConv(Kolmogorov-Arnold generalized network convolution)替換基線(xiàn)模型C3k2(Cross stage partial with kernel size 2)模塊中的瓶頸結(jié)構(gòu),實(shí)現(xiàn)對(duì)精細(xì)特征提取的同時(shí),給予模型更高靈活性和可解釋性;最后,集成分離與增強(qiáng)注意力模塊(Separated and enhancement attention module, SEAM)至檢測(cè)頭,增強(qiáng)模型在遮擋場(chǎng)景中的檢測(cè)能力。試驗(yàn)結(jié)果表明,改進(jìn)模型YOLO 11n-SKS與基線(xiàn)模型相比精確率、召回率、mAP50、mAP50-95分別提升2.3、2.1、1.3、1.4個(gè)百分點(diǎn),達(dá)到91.7%、88.3%、91.9%、62.3%,模型浮點(diǎn)數(shù)運(yùn)算量?jī)H為4.4×109FLOPs,模型參數(shù)量減少17.1%。本研究模型在性能和計(jì)算復(fù)雜度之間實(shí)現(xiàn)了較好的平衡,滿(mǎn)足棉田收獲作業(yè)場(chǎng)景中實(shí)時(shí)檢測(cè)需求,降低了部署邊緣設(shè)備算力要求,為采棉機(jī)自主安全作業(yè)提供技術(shù)支撐。

    Abstract:

    Aiming to address the challenges of accurate obstacle detection in complex cotton field environments due to occlusions and the computational limitations of edge devices, a field obstacle detection method based on improved YOLO 11n model was proposed. Firstly, the lightweight StarNet network was adopted as the primary feature extraction network, and the dynamic position bias attention block module (DBA) was introduced to reconstruct convolutional block with parallel spatial attention (C2PSA) to enhance multi-scale feature interaction. Secondly, Kolmogorov-Arnold generalized network convolution (KAGNConv) was used to replace the bottleneck structure in the cross stage partial with kernel size 2 module (C3k2) of the baseline model, enabling fine-grained feature extraction while improving model flexibility and interpretability. Finally, the separated and enhancement attention module (SEAM) was integrated into the detection head to enhance the model’s detection capability in occlusion scenarios. The experimental results showed that, compared with the baseline model, the improved YOLO 11n-SKS achieved increases of 2.3, 2.1, 1.3, and 1.4 percentage points in precision, recall, mAP50, and mAP50-95, reaching 91.7%, 88.3%, 91.9%, and 62.3%, respectively. The model’s floating-point operations were reduced to only 4.4×109 FLOPs, and the number of model parameters was decreased by 17.1%. This study achieved a favorable balance between performance and computational complexity, meeting the real-time detection requirements of cotton harvesting operations while lowering the computational demands for deployment on edge devices, thereby providing technical support for the autonomous and safe operation of cotton pickers.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

韓科立,王振坤,余永峰,劉淑平,韓樹(shù)杰,郝付平.基于改進(jìn)YOLO 11n模型的棉花田間復(fù)雜環(huán)境障礙物檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):111-120. HAN Keli, WANG Zhenkun, YU Yongfeng, LIU Shuping, HAN Shujie, HAO Fuping. Obstacle Detection Method for Complex Cotton Field Environments Based on Improved YOLO 11n Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):111-120.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-02-03
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼