ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于光譜波段-紋理特征-植被指數(shù)融合的棉蚜蟲危害等級(jí)無人機(jī)監(jiān)測(cè)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002400)、兵團(tuán)財(cái)政科技計(jì)劃項(xiàng)目(2023AB014)和國(guó)家自然科學(xué)基金項(xiàng)目(31901401)


UAV Monitoring of Cotton Aphid Damage Levels Based on Fusion of Spectral Bands, Texture Features and Vegetation Indices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    棉蚜蟲的精準(zhǔn)無損檢測(cè)對(duì)棉蚜蟲害防治及棉花產(chǎn)量和品質(zhì)的提升具有重要意義。本研究提出一種基于多特征融合的棉蚜蟲危害等級(jí)(Cotton aphid damage levels,CADL)監(jiān)測(cè)方法,融合棉花冠層光譜特征波長(zhǎng)、植被指數(shù)和紋理特征,提高棉花蚜蟲危害等級(jí)識(shí)別精度。采用無人機(jī)搭載高光譜成像系統(tǒng)采集棉花冠層高光譜圖像,利用Savitzky-Golay平滑(SG平滑)和多元散射校正(MSC)對(duì)提取的光譜數(shù)據(jù)進(jìn)行預(yù)處理,利用支持向量機(jī)(SVM)模型將預(yù)處理后的光譜數(shù)據(jù)進(jìn)行建模,對(duì)比發(fā)現(xiàn)MSC表現(xiàn)更優(yōu)。采用競(jìng)爭(zhēng)性自適應(yīng)重加權(quán)算法(CARS)和隨機(jī)蛙跳算法(SFLA)對(duì)MSC預(yù)處理后的光譜數(shù)據(jù)進(jìn)行特征波長(zhǎng)一次提取,分別提取出31、37個(gè)特征波長(zhǎng)。進(jìn)一步使用連續(xù)投影算法(SPA)對(duì)特征波長(zhǎng)進(jìn)行二次提取,最終確定了6個(gè)棉蚜蟲危害敏感波長(zhǎng),分別為650、786、931、938、945、961nm。基于二次提取的6個(gè)特征波長(zhǎng),計(jì)算了9種植被指數(shù)和8種紋理特征,并分別分析了9種植被指數(shù)和8種紋理特征與棉蚜蟲危害等級(jí)(CADL)的相關(guān)性。構(gòu)建了LightGBM、XGBoost、SVM和RF模型,并基于以上模型對(duì)比了特征波長(zhǎng)、植被指數(shù)、紋理特征,特征波長(zhǎng)和植被指數(shù)2種特征相融合,以及特征波長(zhǎng)、植被指數(shù)和紋理特征3種特征相融合對(duì)棉蚜蟲危害等級(jí)的判定效果。結(jié)果表明,植被指數(shù)(RDVI、SAVI、MSAVI、OSAVI)和紋理特征(MEA、VAR、DIS、HOM)與CADL相關(guān)性較高。基于特征波長(zhǎng)、植被指數(shù)和紋理特征3種特征相融合的XGBoost模型對(duì)棉蚜蟲危害等級(jí)判定效果最佳,測(cè)試集總體分類精度(OA)達(dá)到86.99%,Kappa系數(shù)為0.8371,相較于僅使用特征波長(zhǎng)、植被指數(shù)、紋理特征,特征波長(zhǎng)和植被指數(shù)2種特征相融合的模型,測(cè)試集OA分別提升4.88、27.64、21.95、2.44個(gè)百分點(diǎn)。

    Abstract:

    Accurate and nondestructive detection of cotton aphids is crucial for effective pest control and enhancing cotton yield and quality. Aiming to propose a multi-feature fusion method for cotton aphid damage level (CADL) monitoring, spectral feature wavelengths, vegetation indices, and cotton canopy texture characteristics were integrated to enhance the accuracy of cotton aphid damage level determination. A UAV-mounted hyperspectral imaging system was employed to collect hyperspectral image data of cotton canopy. Pre-processing of the extracted spectral data involved Savitzky-Golay smoothing (SG smoothing) and multiple scattering correction (MSC). Support vector machine (SVM) modeling was applied to the pre-processed spectral data, results revealed that MSC performed better than SG smoothing in pre-processing. Thus the spectral data pre-processed by MSC was used for characteristic wavelengths extraction. Characteristic wavelengths extraction was conducted by using the competitive adaptive reweighting algorithm (CARS) and the shuffled frog leaping algorithm (SFLA), totally 31 and 37 characteristic wavelengths were extracted by CARS and SFLA, respectively. Subsequently, the successive projections algorithm (SPA) was utilized for secondary characteristic wavelengths extraction. Ultimately,six sensitive wavelengths at wavelengths of 650nm, 786nm, 931nm, 938nm, 945nm and 961nm were extracted. Based on six secondarily extracted characteristic wavelengths, nine vegetation indices and eight texture features were calculated, followed by correlation analysis between these vegetation indices/texture features and CADL. Four machine learning models (LightGBM, XGBoost, SVM, RF) were developed to evaluate the classification performance by using characteristic wavelengths alone, vegetation indices alone, texture features alone, combined characteristic wavelengths and vegetation indices, and integrated characteristic wavelengths, vegetation indices, and texture features. Results indicated that vegetation indices (RDVI, SAVI, MSAVI, OSAVI) and texture features (MEA, VAR, DIS, HOM) exhibited strong correlations with CADL. The XGBoost model incorporating the tri-feature combination (characteristic wavelengths, vegetation indices, texture features) achieved optimal CADL classification performance, yielding an overall accuracy (OA) of 86.99% and a Kappa coefficient of 0.8371 on the test set. Compared with models by using characteristic wavelengths alone, vegetation indices alone, texture features alone, or the dual-feature combination (characteristic wavelengths, vegetation indices), this integrated approach improved OA by 4.88, 27.64, 21.95, and 2.44 percentage points, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

廖娟,王輝,梁業(yè)雄,何欣穎,曾浩求,何松煒,唐賽歐,羅錫文.基于光譜波段-紋理特征-植被指數(shù)融合的棉蚜蟲危害等級(jí)無人機(jī)監(jiān)測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):91-102. LIAO Juan, WANG Hui, LIANG Yexiong, HE Xinying, ZENG Haoqiu, HE Songwei, TANG Saiou, LUO Xiwen. UAV Monitoring of Cotton Aphid Damage Levels Based on Fusion of Spectral Bands, Texture Features and Vegetation Indices[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):91-102.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-02-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼