ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于APSIM的新疆棉花生長與產(chǎn)量動態(tài)預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

新疆維吾爾自治區(qū)重大科技專項(xiàng)(2022A02011-2)、自治區(qū)高校基本科研業(yè)務(wù)費(fèi)科研項(xiàng)目(XJEDU2024P031)、新疆農(nóng)業(yè)大學(xué)作物學(xué)科研項(xiàng)目(XNCDKY2023002)和絲綢之路經(jīng)濟(jì)帶創(chuàng)新驅(qū)動發(fā)展試驗(yàn)區(qū)烏昌石國家自主創(chuàng)新示范區(qū)科技發(fā)展計劃項(xiàng)目(2023LQJ03)


Dynamic Predictions of Cotton Growth and Yield in Xinjiang Based on APSIM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用基于過程的棉花生長動態(tài)模型,精確定量模擬新疆棉田生物量積累和產(chǎn)量形成過程,可為智慧農(nóng)業(yè)決策提供技術(shù)支撐。基于APSIM-Cotton模型構(gòu)建了融合氣象數(shù)據(jù)的棉花生長和產(chǎn)量動態(tài)預(yù)測方法。首先通過2023—2024年田間試驗(yàn)數(shù)據(jù)校準(zhǔn)模型參數(shù),其次運(yùn)用氣候相似年方法構(gòu)建生長季氣象數(shù)據(jù),然后融合ECMWF短期天氣預(yù)測產(chǎn)品(Open Data)進(jìn)行未來9d棉花生長動態(tài)模擬,最終實(shí)現(xiàn)全生育期內(nèi)棉花產(chǎn)量滾動預(yù)測。結(jié)果表明,APSIM-Cotton能夠準(zhǔn)確地模擬昌吉地區(qū)不同播種密度(9~27株/m2)下的棉花生育期(NRMSE為5.18%)、生物量(NRMSE為19.60%)和產(chǎn)量(NRMSE為6.08%);基于短期氣象預(yù)測產(chǎn)品的棉花生物量預(yù)測在1~3d內(nèi)精度最高(NRMSE為1.3%),隨預(yù)報時效延長,9d預(yù)測誤差升至3.24%;通過氣象數(shù)據(jù)融合(即歷史氣象數(shù)據(jù)、短期天氣預(yù)報與歷史氣候相似年型數(shù)據(jù)的動態(tài)拼接)可以在全生育期內(nèi)預(yù)測當(dāng)季棉花產(chǎn)量,使用18個最佳相似年型數(shù)量的預(yù)測誤差最低,產(chǎn)量預(yù)測誤差整體穩(wěn)定在4%以內(nèi),但播種后90~115d預(yù)測誤差波動較大(最大相對誤差可達(dá)10%),因此該時段的預(yù)測結(jié)果需謹(jǐn)慎使用。

    Abstract:

    A process-based cotton growth model could precisely and dynamically simulate the biomass accumulation and yield formation of cotton, so as to provide technical support for smart agricultural decision-making. A dynamic prediction method for cotton growth and yield was developed by integrating meteorological data with the APSIM-Cotton model. Firstly, model parameters were calibrated based on field trial data (2023—2024). Secondly, short-term weather forecasts (ECMWF Open Data) were incorporated for 9d growth simulations. Thirdly, climate analogue years were used to construct seasonal meteorological datasets to enable the dynamic yield prediction throughout the growing season of cotton. The results showed that the APSIM-Cotton model could accurately simulate the phenology dates (NRMSE was 5.18%), biomass (NRMSE was 19.60%), and yields (NRMSE was 6.08%) of cotton under various planting densities (9~27 plants/m2) in Changji, Xinjiang. Short-term biomass predictions achieved the highest accuracy within 1~3d (NRMSE was 1.3%), then the errors were increased to about 3.24% at a 9d forecast. Integrated meteorological data (the dynamic integration of historical meteorological data, short-term weather forecasts, and historical climate analog year data) enabled seasonal yield prediction. Using 18 optimal analogue years minimized prediction errors, stabilizing yield forecast errors below 4%. However, prediction accuracy fluctuated significantly between 90d and 115d after sowing (maximum relative error was 10%), which necessitated cautious application of the prediction results during this period.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳柏青,張悅,王科,呂智怡,陳茂光,湯秋香.基于APSIM的新疆棉花生長與產(chǎn)量動態(tài)預(yù)測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(5):82-90. CHEN Baiqing, ZHANG Yue, WANG Ke, Lü Zhiyi, CHEN Maoguang, TANG Qiuxiang. Dynamic Predictions of Cotton Growth and Yield in Xinjiang Based on APSIM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):82-90.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼