ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于車載成像與深度卷積神經(jīng)網(wǎng)絡(luò)的地表殘膜識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD2002400)、國家棉花產(chǎn)業(yè)技術(shù)體系崗位科學(xué)家項目(CARS-15-17)和石河子大學(xué)高層次人才科研啟動項目(RCZK202442)


Surface Residual Film Recognition Method Based on Vehicle-mounted Imaging and Deep Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對殘膜回收機實際作業(yè)過程中存在多種相似非目標(biāo)場景干擾,目標(biāo)場景圖像背景復(fù)雜且地表殘膜尺寸小、破碎度大、無固定輪廓導(dǎo)致殘膜覆蓋率難以準(zhǔn)確評估的問題,提出基于車載成像和深度卷積神經(jīng)網(wǎng)絡(luò)的地表殘膜識別方法。構(gòu)建了一種基于多重特征增強的SE-DenseNet-DC分類模型,在DenseNet121模型每個稠密塊的非線性組合函數(shù)前后引入通道注意力機制增強有效特征信息通道的權(quán)重,然后引入多尺度串聯(lián)空洞卷積替換原始模型第1層卷積提升感受野并保持細節(jié)敏感度,實現(xiàn)目標(biāo)場景圖像的有效提取;構(gòu)建了一種基于細節(jié)信息增強和多尺度特征融合的CDC-TransUnet分割模型,在TransUnet模型的編碼器部分引入CBAM模塊提取更加細微和精確的全局特征,在跳躍連接部分引入DAB模塊融合多尺度語義信息并彌補編碼和解碼階段特征之間的語義差距,然后在解碼器部分引入CCAF模塊減少上采樣丟失的細節(jié)信息,實現(xiàn)目標(biāo)場景圖像復(fù)雜背景中地表殘膜的精準(zhǔn)分割。試驗結(jié)果表明,SE-DenseNet-DC分類模型對目標(biāo)場景圖像的分類準(zhǔn)確率、查準(zhǔn)率、查全率和F1值分別達到96.26%、91.54%、94.49%和92.83%,CDC-TransUnet分割模型對目標(biāo)場景圖像中地表殘膜分割平均交并比(MIOU)達到77.17%,模型預(yù)測殘膜覆蓋率與人工標(biāo)注殘膜覆蓋率決定系數(shù)(R2)為0.92,均方根誤差(RMSE)為0.23%,平均相對誤差為2.95%,單幅圖像評估時間平均為0.54s。本文方法在殘膜回收機回收后地表殘膜覆蓋率監(jiān)測評估中具有較高的準(zhǔn)確率和較快的推理速度,為殘膜回收機回收質(zhì)量實時準(zhǔn)確評估提供技術(shù)支撐。

    Abstract:

    Aiming to address the challenges in accurately assessing residual film coverage due to interference from multiple similar non-target scenarios, complex background textures in target scene images, and the small size, high fragmentation, and irregular contours of residual films during the operational process of residual film recovery machinery, a residual film recognition method was proposed based on vehicle-mounted imaging and deep convolutional neural networks. A multi-feature-enhanced SE-DenseNet-DC classification model was developed by integrating channel attention mechanisms before and after the nonlinear combination functions in each dense block of the DenseNet121 architecture, the model enhanced the weighting of effective feature channels. Additionally, the first-layer convolution of the original model was replaced with multi-scale cascaded dilated convolutions to expand the receptive field while preserving sensitivity to fine details, enabling effective extraction of target scene images. Furthermore, a CDC-TransUnet segmentation model was constructed with enhanced detail information and multi-scale feature fusion. In the encoder of the TransUnet framework, CBAM modules were introduced to capture finer and more precise global features. DAB modules were embedded in the skip connections to fuse multi-scale semantic information and bridge the semantic gap between encoder and decoder features. CCAF modules were then incorporated into the decoder to mitigate detail loss during upsampling, achieving precise segmentation of residual films against complex backgrounds in target scenes. Experimental results demonstrated that the SE-DenseNet-DC classification model achieved classification accuracy, precision, recall, and F1 score of 96.26%, 91.54%, 94.49%, and 92.83%, respectively, for target scene image classification. The CDC-TransUnet segmentation model achieved an average intersection over union (MIOU) of 77.17% for surface residual film segmentation. The coefficient of determination (R2) between the predicted and manually annotated film coverage was 0.92, with root mean square error (RMSE) of 0.23%, and average relative error of 2.95%. The average evaluation time was 0.54 s per image. This method demonstrated high accuracy and rapid processing capabilities for real-time monitoring and evaluation of residual film coverage post-recovery, providing robust technical support for quality assessment in residual film recovery operations.

    參考文獻
    相似文獻
    引證文獻
引用本文

呂繼東,翟志強,孟慶建,苗璐鵬,陳悅,張若宇.基于車載成像與深度卷積神經(jīng)網(wǎng)絡(luò)的地表殘膜識別方法[J].農(nóng)業(yè)機械學(xué)報,2025,56(5):26-37,70. Lü Jidong, ZHAI Zhiqiang, MENG Qingjian, MIAO Lupeng, CHEN Yue, ZHANG Ruoyu. Surface Residual Film Recognition Method Based on Vehicle-mounted Imaging and Deep Convolutional Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):26-37,70.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼