ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO 11模型的棉田地表殘膜識(shí)別方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2002400)、兵團(tuán)科技攻關(guān)計(jì)劃項(xiàng)目(2023AB014、2022DB003)、新疆棉花產(chǎn)業(yè)技術(shù)體系項(xiàng)目(XJARS-03)和自治區(qū)科技支疆計(jì)劃項(xiàng)目(2024E02016)


Recognition Method of Cotton Field Surface Residual Film Based on Improved YOLO 11
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)殘膜回收機(jī)在自然環(huán)境中快速、準(zhǔn)確地識(shí)別棉田地表殘膜目標(biāo),本文提出了一種基于DCA-YOLO 11輕量化模型的棉田地表殘膜識(shí)別方法。以4JMLE-210型殘膜回收機(jī)工作后棉田地表殘膜為研究對(duì)象,在不同時(shí)間段采集地表殘膜圖像900幅,通過(guò)透視變換、圖像裁剪、數(shù)據(jù)清洗、數(shù)據(jù)增強(qiáng)等預(yù)處理,最終得到5215幅殘膜樣本圖像,按照4∶1劃分為訓(xùn)練集和測(cè)試集,實(shí)現(xiàn)了對(duì)棉田地表殘膜的數(shù)據(jù)集構(gòu)建。通過(guò)在YOLO 11模型主干網(wǎng)絡(luò)中增加深度可分離卷積(DWConv)模塊代替通用卷積(Conv)模塊,用于減少計(jì)算復(fù)雜度和參數(shù)量;通過(guò)在輸出檢測(cè)端末尾加入CBAM卷積塊注意力機(jī)制模塊來(lái)提高模型的感知能力,減少邊緣與背景干擾;通過(guò)用ADown模塊替換主干網(wǎng)絡(luò)中的Conv模塊,實(shí)現(xiàn)殘膜特征圖不同層之間的下采樣,減少特征圖空間維度,保留關(guān)鍵信息來(lái)提高殘膜目標(biāo)檢測(cè)準(zhǔn)確性。試驗(yàn)結(jié)果表明,在復(fù)雜自然環(huán)境下,DCA-YOLO 11模型精確率P為81.9%,召回率R為80.9%,平均精度均值mAP(重疊率0.5)為86.7%,參數(shù)量為2.20×106,處理速度為80f/s。通過(guò)對(duì)不同模型進(jìn)行對(duì)比試驗(yàn),DCA-YOLO 11模型檢測(cè)精確率比YOLO v10、YOLO v9、YOLO v8分別高2.9、2.3、3.8個(gè)百分點(diǎn),召回率比YOLO v10、YOLO v9、YOLO v8分別高2.0、1.0、1.8個(gè)百分點(diǎn),處理速度比YOLO v9、YOLO v8分別提升12.7%、14.2%,略低于YOLO v10。DCA-YOLO 11模型在保證精度的同時(shí),模型最小,參數(shù)量最少,證明其輕量化與優(yōu)越性。模型通過(guò)泛化性試驗(yàn),其在驗(yàn)證數(shù)據(jù)集上的檢測(cè)結(jié)果,R2為0.72,平均絕對(duì)誤差和均方根誤差分別為4.92個(gè)和2.72個(gè),提出的DCA-YOLO 11輕量化模型泛化性較好。該研究可為殘膜回收機(jī)械在復(fù)雜環(huán)境下精準(zhǔn)、高效撿拾殘膜以及殘膜回收機(jī)回收率車載視覺估測(cè)提供理論依據(jù)與數(shù)據(jù)基礎(chǔ)。

    Abstract:

    In response to the issue of estimating the recovery rate of residual film in cotton fields by current residual film recovery machines, a lightweight residual film recognition method named DCA-YOLO 11 was proposed, which enabled rapid and accurate identification of residual film on cotton field surfaces in natural environments. Taking the residual film on cotton field surfaces after the operation of the 4JMLE-210 residual film recovery machine as the research object, totally 900 images of residual film were collected at different time periods. Through preprocessing steps such as perspective transformation, image cropping, data cleaning, and data augmentation, a dataset of 5215 residual film sample images was constructed, which was divided into training and test sets at a 4∶1 ratio. To enhance the model’s performance, a depthwise convolution (DWConv) module was added to the backbone network of YOLO 11 to replace a standard convolution (Conv) module, thereby reducing computational complexity and the number of parameters. Additionally, a CBAM attention mechanism module was incorporated at the end of the detection output to improve the model’s perception capability and reduce interference from edges and backgrounds. Furthermore, the ADown module was used to replace the Conv module in the backbone network, enabling downsampling between different layers of the residual film feature maps, reducing the spatial dimensions of the feature maps while retaining key information to improve the accuracy of residual film target detection. Experimental results demonstrated that the DCA-YOLO 11 model achieved a precision (P) of 81.9%, a recall (R) of 80.9%, and a mean average precision (mAP) of 86.7% (at an IoU threshold of 0.5) in complex natural environments. The model has about 2.20 million parameters, and an FPS of 80f/s. Comparative experiments with other models showed that DCA-YOLO 11 outperformed YOLO v10, YOLO v9 and YOLO v8 in precision by 2.9 percentage points, 2.3 percentage points, 3.8 percentage points. In terms of recall, it was improved by 2.0 percentage points, 1.0 percentage points, and 1.8 percentage points compared with that of YOLO v10, YOLO v9, and YOLO v8, respectively. While its processing speed was slightly lower than than that of YOLO v10, and it surpassed YOLO v9 and YOLO v8 by 12.7% and 14.2%. DCA-YOLO 11 achieved the smallest model size and the fewest parameters while maintaining high accuracy, demonstrating its lightweight design and superiority. Through generalization test, the model’s detection results on the validation dataset showed an R2 of 0.72, a mean absolute error (MAE) of 4.92 pcs and a root mean square error (RMSE) of 2.72 pcs, indicating good generalization. The research result can provide a theoretical foundation and data support for the precise and efficient collection of residual film by recovery machinery in complex environments, as well as for the visual estimation of the recovery rate of residual film recovery machines.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孟慶建,翟志強(qiáng),張連樸,呂繼東,王虎挺,張若宇.基于改進(jìn)YOLO 11模型的棉田地表殘膜識(shí)別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(5):17-25,48. MENG Qingjian, ZHAI Zhiqiang, ZHANG Lianpu, Lü Jidong, WANG Huting, ZHANG Ruoyu. Recognition Method of Cotton Field Surface Residual Film Based on Improved YOLO 11[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(5):17-25,48.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-03-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-05-10
  • 出版日期:
文章二維碼