ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多葉位快速葉綠素熒光和1D-DRDC-Net的棉苗鹽脅迫診斷方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(52222903,、41830754)、福建農(nóng)林大學杰出青年科研人才計劃項目(xjq202117)和省部共建西北旱區(qū)生態(tài)水利國家重點實驗室(西安理工大學)開放研究基金項目(2021KFKT-6)


Cotton Seedling Salt Stress Diagnosis Method Based on Multi-leaf Rapid Chlorophyll Fluorescence and 1D-DRDC-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鹽脅迫會導致棉花纖維品質(zhì)及產(chǎn)量下降,,尤其在苗期時其遭受鹽脅迫影響最大,。為了實現(xiàn)棉苗鹽脅迫的快速診斷,本文利用快速葉綠素熒光技術獲取了不同鹽脅迫程度下棉苗冠層葉片的OJIP曲線,,并結合深度殘差網(wǎng)絡(Deep residual network, ResNet)和空洞卷積(Dilated convolution)結構構建了基于“葉位-通道”熒光數(shù)據(jù)融合的1D-DRDC-Net(1D-deep residual dilated convolutional neural network)棉苗鹽脅迫深度學習診斷模型,。結果表明,鹽脅迫導致棉苗體內(nèi)含水率下降,,丙二醛(Malondialdehyde, MDA)含量,、超氧化物歧化酶(Superoxide dismutase, SOD)活性、過氧化物酶(Peroxidase, POD)活性升高,;在垂直方向上鹽脅迫對棉苗的影響趨勢表現(xiàn)為植株上部分葉片各參數(shù)變化明顯,,其中對脅迫最敏感的葉位為L1,而成熟葉片受到的影響相對較小,。相比于其它模型,,1D-DRDC-Net對棉苗不同脅迫時間下3個鹽濃度梯度(0、100,、200 mmol/L)的診斷精度為76.67%,, F1值為76.48%,比支持向量機(Support vector machine, SVM),、反向傳播神經(jīng)網(wǎng)絡(Back propagation neural network, BPNN)準確率均提高5個百分點,,比隨機森林(Random forest, RF)提高14.45個百分點,比雙向長短期記憶網(wǎng)絡(Bidirectional long short-term memory,,Bi-LSTM)提高3.34個百分點,。基于“葉位-通道”的熒光信息融合策略準確率優(yōu)于僅使用單一敏感葉位熒光信息8.89個百分點,,其魯棒性和泛化能力均優(yōu)于只采用普通卷積核和取消“跳躍連接”的模型,。最終,建立的1D-DRDC-Net模型在棉苗受到脅迫7,、14,、21 d后,對植株是否受到鹽脅迫的診斷準確率分別達到83.33%,、88.33%和95.00%,,研究結果可為棉花栽培管理提供理論依據(jù)。

    Abstract:

    Salt stress can lead to a decrease in cotton fiber quality and yield, especially during the seedling stage when it is most affected by salt stress. In order to achieve rapid diagnosis of salt stress in cotton seedlings, rapid chlorophyll fluorescence technology was used to obtain OJIP curves of cotton seedling canopy leaves under different degrees of salt stress, and deep residual network (ResNet) and dilated convolution structures were combined to construct a 1D-deep residual dilated convolutional neural network (1D-DRDC-Net) cotton seedling salt stress deep learning diagnosis model-based on “l(fā)eaf-position channel” fluorescence data fusion. The results showed that salt stress significantly led to a decrease in water content in cotton seedlings, an increase in malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity. The trend of salt stress on cotton seedlings in the vertical direction showed significant changes in various parameters of the upper leaves of the plant, with L1 being the most sensitive leaf position to stress, while mature leaves were relatively less affected. Compared with other models, the diagnostic accuracy of 1D-DRDC-Net for three salt concentration gradients (0 mmol/L, 100 mmol/L and 200 mmol/L) under different stress times in cotton seedlings was 76.67%, with an F1-score of 76.48%, which was 5 percentage points higher than the accuracy of support vector machine (SVM) and back propagation neural network (BPNN), 14.45 percentage points higher than that of random forest (RF), and 3.34 percentage points higher than that of bidirectional long short-term memory (Bi-LSTM). The fluorescence information fusion strategy-based on “l(fā)eaf-position channel” was more effective than using only a single sensitive leaf position fluorescence information by 8.89 percentage points. Its robustness and generalization ability were stronger than that of models that only use ordinary convolution kernels and cancel “skip connections”. Finally, the established 1D-DRDC-Net model achieved diagnostic accuracies of 83.33%, 88.33%, and 95.00% on the 7th, 14th, and 21st day after cotton seedlings were subjected to salt stress, respectively. The research results can provide theoretical basis for cotton cultivation management.

    參考文獻
    相似文獻
    引證文獻
引用本文

翁海勇,曾海燕,雷慶元,周蓓蓓,李佳懌,徐洪煙.基于多葉位快速葉綠素熒光和1D-DRDC-Net的棉苗鹽脅迫診斷方法[J].農(nóng)業(yè)機械學報,2025,56(3):476-484,493. WENG Haiyong, ZENG Haiyan, LEI Qingyuan, ZHOU Beibei, LI Jiayi, XU Hongyan. Cotton Seedling Salt Stress Diagnosis Method Based on Multi-leaf Rapid Chlorophyll Fluorescence and 1D-DRDC-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):476-484,,493.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼