ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于近地傳感光譜協(xié)同的土壤重金屬含量空間分布預(yù)測(cè)方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41601370),、農(nóng)業(yè)農(nóng)村部黃淮海智慧農(nóng)業(yè)技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(202305、202410),、河南省農(nóng)業(yè)科學(xué)院自主創(chuàng)新項(xiàng)目(2024ZC068)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(CCNU22JC022)


Prediction Method for Soil Heavy Metal Content Based on Covariates over Proximally Sensed Spectra
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    土壤重金屬采樣、分析與污染評(píng)價(jià)耗費(fèi)大量人力和物力,,借助易獲取環(huán)境協(xié)變量信息對(duì)提高土壤重金屬污染監(jiān)測(cè)效率意義重大,。近地光譜是土壤屬性綜合響應(yīng),在反映土壤重金屬信息方面有著巨大的研究潛力,。為考察近地光譜輔助預(yù)測(cè)土壤重金屬含量的能力,,測(cè)量了109個(gè)表層土樣的近紅外光譜,并提取與土壤鎳密切相關(guān)的光譜信息,;再以土壤機(jī)械組成及其與光譜信息的組合作為輔助變量建立協(xié)同克里格模型,,并比較土壤鎳空間預(yù)測(cè)制圖精度。結(jié)果表明:以粉粒含量和光譜2 380 nm波段吸收率共同作為輔助變量的模型結(jié)果優(yōu)于只以粉粒含量作為輔助變量的模型,,交叉驗(yàn)證決定系數(shù)R2CV由0.49提高到0.68,,交叉驗(yàn)證均方根誤差(RMSECV)由11.3 mg/kg降至9.5 mg/kg。這說明近紅外光譜作為一種易獲取的輔助信息,,可協(xié)同土壤機(jī)械組成構(gòu)建空間預(yù)測(cè)模型以提高區(qū)域土壤重金屬的調(diào)查精度,。研究結(jié)果可為土壤重金屬含量空間分布預(yù)測(cè)提供一種經(jīng)濟(jì)高效的解決方案。

    Abstract:

    Sampling, analyzing, and assessing soil heavy metal pollution requires significant manpower and resources. Access to easily obtainable environmental covariate information is crucial for enhancing the efficiency of soil heavy metal pollution monitoring. The spectra from proximal soil sensing are a comprehensive response of soil properties, and they have great potential to reveal heavy metal concentrations in soil. Near-infrared spectral characteristics of heavy metals in the surface soil of 109 samples were analyzed, and spectral information closely linked to soil Ni was extracted. This data was then utilized as auxiliary information to develop a co-Kriging model. Subsequently, co-Kriging models were constructed by using soil mechanical composition, and its combination with spectral information as auxiliary variables to compare the accuracy of spatial prediction mapping of Ni concentrations in the soil. The results indicated that the model incorporating silt concentrations in addition to the absorbance at 2 380 nm as auxiliary variables outperformed the model by using only silt concentrations. The cross-validated coefficient of determination R2CV was increased from 0.49 to 0.68, while the cross-validated root mean squared error (RMSECV) was decreased from 11.3 mg/kg to 9.5 mg/kg. These findings suggested that NIR spectra, as readily accessible auxiliary information, can be used with soil mechanical composition to develop spatial prediction models and further enhance the precision of regional soil heavy metal surveys. The research result can offer a cost-effective solution for the spatial prediction of heavy metals in soil.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李碩,王雅晉,覃衛(wèi)林,莫曉明,胡碧峰,郭燕.基于近地傳感光譜協(xié)同的土壤重金屬含量空間分布預(yù)測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):451-457. LI Shuo, WANG Yajin, QIN Weilin, MO Xiaoming, HU Bifeng, GUO Yan. Prediction Method for Soil Heavy Metal Content Based on Covariates over Proximally Sensed Spectra[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):451-457.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼