ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于雙目相機(jī)和深度學(xué)習(xí)的魚類攝食強(qiáng)度分析方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省研究生教育創(chuàng)新計(jì)劃項(xiàng)目(2023JGXM_75),、廣東海洋大學(xué)科研啟動(dòng)資金項(xiàng)目(060302062201),、廣東農(nóng)技服務(wù)輕騎兵重大農(nóng)業(yè)技術(shù)鄉(xiāng)村行推廣項(xiàng)目(NJTG20240240)、廣東省南海海洋牧場(chǎng)智能裝備重點(diǎn)實(shí)驗(yàn)室課題(2023B1212030003),、廣東省普通高校創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2024KCXTD041)和湛江市現(xiàn)代海洋漁業(yè)裝備重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2021A05023)


Design and Experimentation of Fish Feeding Intensity System Based on Binocular Cameras and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為精確判別深海網(wǎng)箱養(yǎng)殖中魚類攝食強(qiáng)度,,實(shí)現(xiàn)精量投喂,以金鯧魚進(jìn)食時(shí)造成的水花為研究對(duì)象,,利用雙目相機(jī)拍攝到的深度圖像進(jìn)行非侵入性的攝食強(qiáng)度分析,,提出一種基于雙目相機(jī)和深度學(xué)習(xí)的水花面積語義分割和計(jì)算方法。首先,,為了使模型能夠在低成本的邊緣設(shè)備上部署,,通過StarNet和BiFPN以及自主設(shè)計(jì)的SCD-Head共享卷積檢測(cè)頭對(duì)YOLO v8n-seg進(jìn)行改進(jìn),提出輕量化的YOLO v8n-SBS模型,。在精度提升3.2個(gè)百分點(diǎn)的同時(shí),,參數(shù)量與浮點(diǎn)運(yùn)算量分別減少71%和36%。其次,,為降低設(shè)備成本,,采用雙目相機(jī),基于深度信息利用線性回歸提出水花面積計(jì)算模型DI,。最終,,兩個(gè)模型結(jié)合為YOLO v8n-SBS-DI,該模型能夠?qū)λㄟM(jìn)行分割并計(jì)算面積,,以便通過水花面積變化趨勢(shì)評(píng)估攝食強(qiáng)度,。海上試驗(yàn)計(jì)算結(jié)果顯示,水花面積R2為0.914,,RMSE為0.973 m2,,MAE為0.870 m2。試驗(yàn)結(jié)果表明,該模型具有較強(qiáng)魯棒性,,滿足復(fù)雜環(huán)境下水花面積計(jì)算需求,,可為判別魚類攝食強(qiáng)度提供技術(shù)支持。

    Abstract:

    Assessing the feeding intensity of fish in large-scale cages is crucial for enhancing feed utilization and reducing farming costs. Traditional feeding methods heavily rely on the experience of aquaculture managers, often leading to overfeeding, which contaminates water quality, or underfeeding, and adversely affects fish health. To accurately determine fish feeding intensity in deep-sea cage farming and achieve precise feeding, focusing on the splashes generated by pompano during feeding, utilizing depth images captured by a binocular camera, a non-invasive feeding intensity analysis method was proposed, involving semantic segmentation and area calculation of the splash. Firstly, to enable the model’s deployment on low-cost edge devices, the YOLO v8n-seg model was improved through the incorporation of StarNet, BiFPN, and a custom-designed SCD-Head shared convolutional detection head, resulting in the lightweight YOLO v8n-SBS model. This modification achieved a 3.2 percentage points increase in accuracy while reducing the number of parameters and floating-point operations by 71% and 36%, respectively. Secondly, to minimize equipment costs, a binocular camera was employed, and PVC boards were used to simulate splash targets on land for experimental convenience. A linear regression model (DI) was proposed to calculate splash area-based on depth information. The results of the DI model on the test set demonstrated an R2 value of 0.977, an RMSE of 0.033 m2, and an MAE of 0.023 m2, indicating robust performance. Ultimately, the two models were combined into YOLO v8n-SBS-DI, which can segment splashes and compute their area, allowing for the assessment of feeding intensity through the trend of splash area changes. Sea trial results showed that the calculated splash area yields an R2 value of 0.914, an RMSE of 0.973 m2, and an MAE of 0.870 m2. These experimental outcomes confirmed that the model exhibited strong robustness and met the demands for splash area calculations in complex environments, thereby providing technical support for determining fish feeding intensity.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

俞國燕,錢利文,劉皞春,何子健.基于雙目相機(jī)和深度學(xué)習(xí)的魚類攝食強(qiáng)度分析方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):403-413,,424. YU Guoyan, QIAN Liwen, LIU Haochun, HE Zijian. Design and Experimentation of Fish Feeding Intensity System Based on Binocular Cameras and Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):403-413,,424.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼