ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量化YOLO v5s-MCA的番茄成熟度檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省科技計(jì)劃現(xiàn)代農(nóng)業(yè)項(xiàng)目(BE2018302),、江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目(SJCX24_2211)和揚(yáng)州大學(xué)高端人才支持計(jì)劃項(xiàng)目


Tomato Maturity Detection Method Based on Lightweight YOLO v5s-MCA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)自然環(huán)境下番茄識(shí)別易受復(fù)雜背景干擾、相鄰果實(shí)成熟度相似難以檢測(cè)等問(wèn)題,,本文提出了一種輕量化YOLO v5s-MCA番茄成熟度識(shí)別模型,,劃分成熟期、轉(zhuǎn)熟期,、轉(zhuǎn)色期和未熟期4個(gè)成熟度等級(jí),。該模型在YOLO v5s基礎(chǔ)上使用MobileNetV3網(wǎng)絡(luò),減少了模型參數(shù)量,;在主干網(wǎng)絡(luò)和頸部網(wǎng)絡(luò)引入坐標(biāo)注意力機(jī)制(Coordinate attention,,CA),提高了模型對(duì)番茄特征表達(dá)能力,;將頸部網(wǎng)絡(luò)替換為加權(quán)雙向特征金字塔網(wǎng)絡(luò)BiFPN,,強(qiáng)化了模型特征融合性能并提高了模型識(shí)別準(zhǔn)確率;將頸部網(wǎng)絡(luò)中的標(biāo)準(zhǔn)卷積模塊改進(jìn)為GSConv卷積,,減輕了模型復(fù)雜度并提高了對(duì)目標(biāo)信息的獲取能力,。試驗(yàn)結(jié)果表明,YOLO v5s-MCA模型參數(shù)量?jī)H為2.33×106,,計(jì)算量?jī)H為4.1×109,模型內(nèi)存占用量?jī)H為4.83 MB,其精準(zhǔn)度和平均精度均值分別達(dá)到92.8%和95.1%,,相對(duì)YOLO v5s基礎(chǔ)模型分別提升3.4,、4.4個(gè)百分點(diǎn)。對(duì)比YOLO v3s,、YOLO v5s,、YOLO v5n、YOLO v7,、YOLO v8n及YOLO v10n等6種模型,,YOLO v5s-MCA模型輕量化效果與檢測(cè)性能最優(yōu)。

    Abstract:

    Aiming to address the challenges of tomato recognition in natural environments, such as interference from complex backgrounds and difficulty in detecting adjacent fruits with similar ripeness levels, a lightweight YOLO v5s-MCA model for tomato ripeness detection was proposed. The model categorized tomato ripeness into four distinct stages: mature, turning mature, color transition, and immature. Firstly, it incorporated the MobileNetV3 network as the backbone, significantly reducing the model’s parameter count and computational requirements. Moreover, the coordinate attention (CA) mechanism was integrated into the backbone and neck networks, enhancing the model’s ability to enhance the model’s ability to represent tomato features. Additionally, the neck network was replaced with a weighted bidirectional feature pyramid network (BiFPN) to strengthen feature fusion and improve recognition accuracy. The standard convolution modules in the neck network were also replaced with GSConv convolution to reduce model complexity and enhance the ability to capture target information. Experimental evaluations revealed the superior performance of the YOLO v5s-MCA model. The model achieved a parameter count of only 2.33×106, with a computational cost of 4.1×109 and a memory footprint of just 4.83 MB. The model achieved a precision of 92.8% and a mean average precision (mAP) of 95.1%, representing improvements of 3.4 percentage points and 4.4 percentage points, respectively, compared with the baseline YOLO v5s model. To further validate the effectiveness of the YOLO v5s-MCA model, it was compared with six other models, including YOLO v3s, YOLO v5s, YOLO v5n, YOLO v7, YOLO v8n, and YOLO v10n. Among these, the YOLO v5s-MCA model outperformed its counterparts in terms of lightweight design and detection performance.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

奚小波,丁杰源,翁小祥,王昱,韓連杰,鄒贇涵,唐子昊,張瑞宏.基于輕量化YOLO v5s-MCA的番茄成熟度檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):383-391,,436. XI Xiaobo, DING Jieyuan, WENG Xiaoxiang, WANG Yu, HAN Lianjie, ZOU Yunhan, TANG Zihao, ZHANG Ruihong. Tomato Maturity Detection Method Based on Lightweight YOLO v5s-MCA[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):383-391,,436.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼