ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v8n網(wǎng)絡(luò)的番茄成熟度實(shí)時(shí)檢測算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(62271447)


Improved YOLO v8n Network for Real-time Detection of Tomato Maturity
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為應(yīng)對(duì)番茄采摘面臨的果農(nóng)老齡化,、勞動(dòng)力短缺和人工成本上漲等挑戰(zhàn),,解決在復(fù)雜果園環(huán)境下番茄采摘機(jī)器人視覺系統(tǒng)成熟度檢測精度低和實(shí)例分割不準(zhǔn)確等問題,本文提出一種基于改進(jìn)YOLO v8n網(wǎng)絡(luò)的番茄成熟度實(shí)時(shí)檢測算法。首先,,通過在YOLO v8n網(wǎng)絡(luò)中引入通道嵌入位置注意力模塊和改進(jìn)大核卷積塊注意力模塊,,能夠在淺層網(wǎng)絡(luò)保留番茄目標(biāo)位置信息,建立目標(biāo)區(qū)域之間的長距離依賴關(guān)系,,從而增加YOLO v8n網(wǎng)絡(luò)對(duì)顯著番茄特征的關(guān)注,。然后,在LaboroTomato數(shù)據(jù)集上進(jìn)行了對(duì)比實(shí)驗(yàn),,改進(jìn)YOLO v8n相較于原YOLO v8n網(wǎng)絡(luò),,檢測和分割的mAP@50和mAP@50-95分別提高0.4、1.4個(gè)百分點(diǎn)和0.3,、1.2個(gè)百分點(diǎn),。最后,實(shí)現(xiàn)了改進(jìn)YOLO v8n網(wǎng)絡(luò)在低成本,、低算力和低功耗的Jetson Nano平臺(tái)上的輕量化部署,,模型內(nèi)存占用量由滿溢減少到2.4 GB,推理速度加倍,。該研究可為番茄采摘機(jī)器人在復(fù)雜場景下實(shí)時(shí),、準(zhǔn)確檢測番茄成熟度提供技術(shù)支撐。

    Abstract:

    To address the numerous challenges faced in tomato harvesting, such as the aging of farmers, labor shortages, and rising labor costs, and resolve issues related to the low maturity detection accuracy and inaccurate instance segmentation of tomato harvesting robots in complex orchard environments, an improved YOLO v8 network-based real-time tomato maturity detection algorithm was proposed. Firstly, by introducing the channel embedded positional attention module and an improved large kernel convolutional block attention module into the YOLO v8n network, the algorithm can effectively retain the positional information of tomato targets in the shallow network layers and establish long-range dependencies between target regions, thereby significantly increasing the attention of the YOLO v8n network to critical tomato features. Then a series of comprehensive and rigorous comparative experiments were conducted on the LaboroTomato dataset, demonstrating that the improved YOLO v8n network achieved 0.4 percentage points, 1.4 percentage points, and 0.3 percentage points, 1.2 percentage points improvements in detection and segmentation mAP@50 and mAP@50-95, respectively, compared with that of the original YOLO v8n network. Finally, the improved YOLO v8n network was lightweight deployed on the low-cost, low-computation, and low-power Jetson Nano platform, successfully reducing memory usage from overflow to 2.4 GB and doubling the inference speed. The research result can provide robust technical support for the real-time and accurate detection of tomato maturity by tomato harvesting robots in complex scenarios, significantly enhancing the overall efficiency and effectiveness of automated tomato harvesting operations.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任晶秋,萬恩晗,單蜜,張光華,盧為黨.基于改進(jìn)YOLO v8n網(wǎng)絡(luò)的番茄成熟度實(shí)時(shí)檢測算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):374-382,,450. REN Jingqiu, WAN Enhan, SHAN Mi, ZHANG Guanghua, LU Weidang. Improved YOLO v8n Network for Real-time Detection of Tomato Maturity[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):374-382,,450.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼