ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于三維點(diǎn)云的黃瓜葉片分割與表型參數(shù)提取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32171896)和江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2022327)


Cucumber Leaf Segmentation and Phenotype Extraction Method Based on Three-dimensional Point Cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    自動(dòng)獲取植株冠層表型形狀對(duì)黃瓜育種和科學(xué)栽培至關(guān)重要,。由于當(dāng)前三維點(diǎn)云處理技術(shù)難以在黃瓜植株點(diǎn)云上對(duì)莖葉進(jìn)行有效分離,,分割準(zhǔn)確率和效率較低。本文提出了一種改進(jìn)的區(qū)域生長(zhǎng)分割算法,,并對(duì)分割后葉片進(jìn)行表型提取,。首先通過(guò)深度相機(jī)從4個(gè)角度采集黃瓜點(diǎn)云數(shù)據(jù),在統(tǒng)計(jì)濾波和顏色濾波去除背景噪聲以及離群點(diǎn)的基礎(chǔ)上,,基于旋轉(zhuǎn)軸和廣義最近點(diǎn)迭代(Generalized nearest point iterative,,GICP)算法對(duì)點(diǎn)云進(jìn)行配準(zhǔn)獲取完整黃瓜植株點(diǎn)云;使用體素和移動(dòng)最小二乘算法(Moving lest squares,,MLS)對(duì)區(qū)域生長(zhǎng)算法進(jìn)行改進(jìn),,實(shí)現(xiàn)莖葉分離與葉片分割;分割后葉片點(diǎn)云自動(dòng)提取葉片數(shù)量,、葉面積,、葉長(zhǎng)、葉寬,、葉周長(zhǎng)表型參數(shù),。實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)區(qū)域生長(zhǎng)算法相比,,改進(jìn)區(qū)域生長(zhǎng)算法可以精準(zhǔn)地分割出單個(gè)葉片,,對(duì)移栽15 d的準(zhǔn)確率平均提升12.5個(gè)百分點(diǎn),對(duì)移栽60 d的準(zhǔn)確率平均提升22.5個(gè)百分點(diǎn),。葉面積,、葉長(zhǎng)、葉寬,、葉周長(zhǎng)4個(gè)參數(shù)與真實(shí)測(cè)量值相比決定系數(shù)R2分別為0.96,、0.93、0.93,、0.94,,均方根誤差(RMSE)分別為12.69 cm2、0.93 cm,、0.98 cm,、2.27 cm,。本文提出的方法能夠從單株黃瓜點(diǎn)云中高效地分割出單個(gè)葉片點(diǎn)云,并準(zhǔn)確地計(jì)算相關(guān)表型性狀,,為溫室黃瓜高通量自動(dòng)化表型測(cè)量提供有力的技術(shù)支持,。

    Abstract:

    Automatic acquisition of plant canopy phenotypic shape is essential for seed selection and scientific cultivation of cucumber varieties. Segmentation accuracy and efficiency are low due to the difficulty of current 3D point cloud processing techniques to perform effective separation of stems and leaves on cucumber plant point clouds. Aiming to address this problem, an improved algorithm for regional growth segmentation and phenotype extraction was proposed by segmented leaves. Firstly, the point cloud data of cucumber was collected from four angles by depth camera, and on the basis of statistical filtering and color filtering to remove the background noise as well as outliers, the complete cucumber plant point cloud by aligning the point cloud-based on rotary axis and generalized nearest point iterative algorithm (GICP), and then the region growth algorithm was improved by using voxel-based and moving least squares algorithms (MLS) to realize the separation of stems and leaves and the segmentation of leaves;finally, phenotypic parameters such as number of leaves, leaf area, leaf length, leaf width, leaf circumference were automatically extracted from the segmented leaf point cloud. The experimental results showed that individual leaves could be accurately segmented by the improved zone-growth algorithm compared with the traditional zone-growth algorithm, with an average increase in accuracy of 12.5 percentage points for 15 d of transplanting and 22.5 percentage points for 60 d of transplanting. The coefficient of determination R2 for the four parameters of leaf area, leaf length, leaf width, and leaf circumference were 0.96, 0.93, 0.93, and 0.94, respectively, and the root-mean-square error RMSE was 12.69 cm2, 0.93 cm, 0.98 cm, and 2.27 cm, respectively, compared with the true measurements. Therefore, the proposed method can efficiently segment individual leaf point clouds from a single cucumber point cloud and accurately calculate related phenotypic traits, providing strong technical support for high-throughput automated phenotypic measurements in greenhouse cucumbers.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王紀(jì)章,姚承志,周靜,黃志剛,陳勇明.基于三維點(diǎn)云的黃瓜葉片分割與表型參數(shù)提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):354-362. WANG Jizhang, YAO Chengzhi, ZHOU Jing, HUANG Zhigang, CHEN Yongming. Cucumber Leaf Segmentation and Phenotype Extraction Method Based on Three-dimensional Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):354-362.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-06
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼