ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機多光譜信息與紋理特征融合的小麥葉面積指數(shù)估測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系小麥創(chuàng)新團隊項目(21326318D),、河北省農(nóng)林科學院基本科研業(yè)務費項目(2023090101)和河北省農(nóng)林科學院科技創(chuàng)新專項項目(2022KJCXZX-NXS-5)


Wheat Leaf Area Index Estimation Based on Fusion of UAV Multispectral Information and Texture Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    葉面積指數(shù)(Leaf area index,,LAI)是作物生長監(jiān)測和產(chǎn)量預測的重要指標之一,為探究基于無人機多光譜技術(shù)的小麥LAI估測模型潛力,,本文以小麥育種材料為研究對象,,基于無人機平臺獲取小麥拔節(jié)期,、孕穗期、抽穗期,、開花期的多光譜圖像,,得到12種植被指數(shù)(Vegetation index,VI)及各波段的8種紋理特征(Texture features,,TF),。然后,利用皮爾遜相關(guān)性分析方法篩選與LAI相關(guān)性較強的VI和TF,,在優(yōu)選2類特征基礎(chǔ)上,,利用遞歸特征消除法(Recursive feature elimination,RFE)篩選兩者結(jié)合的綜合特征(Comprehensive features,,CF),。最后,基于3類特征,,采用多元線性回歸(Multiple linear regression,,MLR)、支持向量回歸(Support vector regression,,SVR),、梯度提升回歸(Gradient boosting regression,GBR)3種機器學習算法構(gòu)建LAI估測模型,,比較模型在各生育期的估測精度差異,。結(jié)果表明:CF有效提高了小麥各生育期LAI估測精度;3種機器學習算法中,,GBR更具穩(wěn)定性,,對3類特征均有較好的LAI擬合效果;以植被指數(shù)RVI,、NDVI和紋理特征NIR_COR,、R_MEA作為輸入變量,結(jié)合GBR算法能夠準確估測小麥LAI,,所有時期訓練集R2為0.91,,RMSE為0.45,測試集R2為0.84,,RMSE為0.67,。本研究可為基于多光譜技術(shù)的小麥LAI估測提供應用參考。

    Abstract:

    Leaf area index (LAI) is one of the important indicators for crop growth monitoring and yield prediction. In order to explore the potential of wheat LAI estimation models-based on UAV multispectral technology, taking wheat breeding materials as the research object, the multispectral images were obtained-based on the UAV platform at jointing, booting, heading and flowering stages of wheat, and further calculated 12 vegetation indices (VI) and eight types of texture features (TF) in each band. Then, the Pearson correlation analysis method was employed to identify VI and TF which strongly correlated with LAI, and the recursive feature elimination method (RFE) was used to screen the comprehensive features (CF) on the bases of the preferred two types of features. Finally, based on the three types of features, three machine learning algorithms including multiple linear regression (MLR), support vector regression (SVR) and gradient boosting regression (GBR) were employed to establish LAI estimation models, and the estimation accuracy of the models was compared at different growth stages. The results showed that the CF effectively improved the accuracy of wheat LAI estimation models at each growth stages;among the three machine learning algorithms, GBR performed greater stability, and had better LAI fitting for the three types of features;specifically, the LAI estimation model-based on GBR, using vegetation indices RVI, NDVI, and texture features NIR_COR, R_MEA as input variables, performed best, with R2 of 0.91 and RMSE of 0.45 in the training set, R2 of 0.84 and RMSE of 0.67 in the testing set for all stages. The research result can provide an application reference for LAI estimation of wheat-based on multispectral technology.

    參考文獻
    相似文獻
    引證文獻
引用本文

齊浩,孫海芳,呂亮杰,李偲,閔家楠,侯亮.基于無人機多光譜信息與紋理特征融合的小麥葉面積指數(shù)估測[J].農(nóng)業(yè)機械學報,2025,56(3):334-344. QI Hao, SUN Haifang, Lü Liangjie, LI Si, MIN Jia’nan, HOU Liang. Wheat Leaf Area Index Estimation Based on Fusion of UAV Multispectral Information and Texture Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):334-344.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼