ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于目標(biāo)引導(dǎo)的多目標(biāo)蘋果采摘路徑規(guī)劃方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

河南省重點(diǎn)研發(fā)專項(xiàng)(231111112700)、河南省高等學(xué)校青年骨干教師培養(yǎng)計(jì)劃項(xiàng)目(2021GGJS077)和華北水利水電大學(xué)青年骨干教師培養(yǎng)計(jì)劃項(xiàng)目(2021-125-4)


Multi-objective Apple Picking Path Planning Method Based on Target Guidance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)蘋果采摘機(jī)械臂在非結(jié)構(gòu)化果園環(huán)境中路徑規(guī)劃效率低和路徑質(zhì)量差等問(wèn)題,,提出了一種結(jié)合樹(shù)枝密集度參數(shù)的粒子群優(yōu)化算法(Branch density parameter-based particle swarm optimization, BD-PSO)與目標(biāo)引導(dǎo)快速擴(kuò)展隨機(jī)樹(shù)星算法(Target-guided rapidly-exploring random tree star,TG-RRT*)的多目標(biāo)路徑規(guī)劃方法(BD-PSO_TG-RRT*),。通過(guò)在快速擴(kuò)展隨機(jī)樹(shù)星(RRT*)算法中引入自適應(yīng)步長(zhǎng),、設(shè)定等邊圓錐采樣區(qū)域、目標(biāo)偏向策略和直連策略,,加速路徑生成并增強(qiáng)導(dǎo)向性,。對(duì)初始路徑進(jìn)行冗余點(diǎn)去除與三次B樣條曲線平滑處理,提升路徑質(zhì)量,。通過(guò)BD-PSO算法確定多目標(biāo)采摘順序,。實(shí)驗(yàn)結(jié)果表明,TG-RRT*算法相較于傳統(tǒng)快速擴(kuò)展隨機(jī)樹(shù)(RRT)和RRT*算法平均路徑長(zhǎng)度縮短23.18%,、11.67%,,平均時(shí)間降低12.59%、71.96%,,平均迭代次數(shù)降低68.07%、31.58%,。在多目標(biāo)連續(xù)采摘路徑規(guī)劃仿真實(shí)驗(yàn)中,,BD-PSO_TG-RRT*算法與原PSO與TG-RRT*結(jié)合算法相比,平均規(guī)劃時(shí)間降低8.14%,,平均迭代次數(shù)降低13.24%,,BD-PSO_TG-RRT*算法能夠生成適用于機(jī)械臂多目標(biāo)采摘的最優(yōu)路徑,有效縮短了采摘路徑總長(zhǎng)度,,并顯著減少了路徑規(guī)劃時(shí)間,。研究結(jié)果為蘋果采摘機(jī)器人在執(zhí)行多目標(biāo)連續(xù)采摘任務(wù)時(shí)提供了技術(shù)參考。

    Abstract:

    Aiming to address the issues of low planning efficiency and long planning paths of apple-picking robotic arms in unstructured orchard environments, a target-guided multi-objective apple picking path planning method (BD-PSO_TG-RRT*) was proposed, which combined a particle swarm optimization (PSO) algorithm incorporating a branch density parameter with a target-guided rapidly-exploring random tree star (TG-RRT*) path planning algorithm. Firstly, based on the traditional RRT* algorithm, an adaptive step-size strategy was introduced, and an equilateral conical sampling region was defined. A target-biasing strategy was also incorporated to enhance the goal-directedness of sampling within this region. A direct connection strategy was used for new nodes to enable faster convergence, thereby improving the speed of path generation. Secondly, the initial planned path was refined by removing redundant points and transforming it into a smooth path using cubic B-spline curves, improving path quality. Lastly, to account for obstacles such as branches during the picking process, a branch density parameter was introduced into the PSO algorithm to obtain the optimal solution for the multi-objective picking sequence. Experimental results for path planning showed that compared with the RRT and RRT* algorithms, the TG-RRT* algorithm reduced average path length by 23.18% and 11.67%, respectively, decreased average time by 12.59% and 71.96%, and lowered the average number of iterations by 68.07% and 31.58%. In multi-objective picking experiments, the BD-PSO_TG-RRT* algorithm with the branch density parameter reduced average planning time by 8.14% and average iterations by 13.24% compared with the original PSO combined with TG-RRT* algorithm. These experimental results demonstrated that the BD-PSO_TG-RRT* algorithm accurately generated an optimal path for multi-objective applepicking, shortened the path length, reduced planning time, and significantly improved the efficiency of multi-objective apple-picking path planning. This algorithm can provide technical reference for apple picking robots to perform multi-objective continuous picking tasks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

牛金星,王碩,趙俊龍,劉正義,于青源.基于目標(biāo)引導(dǎo)的多目標(biāo)蘋果采摘路徑規(guī)劃方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):208-215,,226. NIU Jinxing, WANG Shuo, ZHAO Junlong, LIU Zhengyi, YU Qingyuan. Multi-objective Apple Picking Path Planning Method Based on Target Guidance[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):208-215,,226.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼