ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多目標(biāo)優(yōu)化的策略型自適應(yīng)農(nóng)機(jī)路徑跟蹤控制方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

四川省青年基金項(xiàng)目(25QNJJ4155)和四川省農(nóng)業(yè)農(nóng)村廳揭榜掛帥項(xiàng)目(ZZ20240018-2)


Adaptive Path Tracking Predictive Control Method for Agricultural Machinery Based on Strategy-based Multi-objective Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提升農(nóng)機(jī)路徑跟蹤平滑度和精度,,降低環(huán)境噪聲、傳感器噪聲等外部干擾,,提出一種基于多目標(biāo)優(yōu)化的策略型自適應(yīng)農(nóng)機(jī)路徑跟蹤控制方法,。以綜合誤差最小為目標(biāo),建立農(nóng)機(jī)運(yùn)動(dòng)學(xué)模型及誤差模型,,采用拉丁超立方采樣,、策略型早停機(jī)制和適應(yīng)度記憶對(duì)北極海鸚算法進(jìn)行優(yōu)化,利用優(yōu)化后北極海鸚算法對(duì)模型預(yù)測(cè)算法的元參數(shù)進(jìn)行自適應(yīng)調(diào)整,;以減少外部干擾并提升路徑平滑程度為目標(biāo),,建立農(nóng)機(jī)狀態(tài)多目標(biāo)優(yōu)化函數(shù),引入多目標(biāo)輔助優(yōu)化算法,,并與模型預(yù)測(cè)算法代價(jià)函數(shù)結(jié)合,,對(duì)農(nóng)機(jī)控制量進(jìn)行求解。在此基礎(chǔ)上引入事件觸發(fā)的熱啟動(dòng)技術(shù),,利用歷史數(shù)據(jù)縮短模型預(yù)測(cè)控制優(yōu)化時(shí)間,。仿真試驗(yàn)結(jié)果表明,當(dāng)農(nóng)機(jī)作業(yè)速度為1.0 m/s時(shí),,最大絕對(duì)誤差為0.06 m,,平均誤差為0.02 m。相較于原預(yù)測(cè)算法,,單次運(yùn)行時(shí)間僅增加0.007 s,,路徑平滑度平均提升83%。實(shí)地試驗(yàn)結(jié)果表明,,當(dāng)速度為0.5,、1.0,、1.5 m/s時(shí),優(yōu)化后算法平均誤差相較于原始模型預(yù)測(cè)算法分別提升33%,、35%,、38%,路徑平滑程度分別提升40%,、51%,、10%。

    Abstract:

    Aiming to enhance the path tracking capability of agricultural machinery in complex environments, an adaptive predictive control method was proposed-based on multi-objective optimization. The goal was to reduce external disturbances and improve path smoothness. Firstly, a kinematic model and error model of the machinery were developed, and its dynamic behavior under working conditions was analyzed. The arctic parrot algorithm was introduced, with a comprehensive error objective function designed for path tracking. By combining real-time feedback, AP adjusted model predictive control (MPC) parameters for better accuracy. Next, a multi-objective optimization algorithm was integrated with the MPC cost function to improve tracking accuracy, smoothness, and stability. To address delays caused by increased controller dimensionality, Latin hypercube sampling was used for efficient population initialization, reducing computational load. An early stopping mechanism and fitness memory were applied to accelerate the optimization process by halting iterations once a fitness threshold reached. Additionally, a warm start technique-based on historical data was introduced to shorten optimization time, enabling faster application to new tasks. Simulation results at 1.0 m/s showed a lateral maximum absolute error of only 0.06 m, with an average error of 0.02 m, while running time remained comparable to traditional MPC algorithms. Path smoothness was improved by 83%, indicating enhanced stability. In field tests, the algorithm outperformed traditional MPC with error reductions of 33%, 35%, and 38% at speeds of 0.5 m/s, 1.0 m/s, and 1.5 m/s, respectively. Path smoothness was increased by 40%, 51%, and 10%. These results validated the effectiveness of this method in practical applications, ensuring stable performance across complex scenarios and reducing path deviations due to external factors.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉環(huán)宇,唐嘉城,鄒順,張藜瀚,于浩,王霜.基于多目標(biāo)優(yōu)化的策略型自適應(yīng)農(nóng)機(jī)路徑跟蹤控制方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):198-207. LIU Huanyu, TANG Jiacheng, ZOU Shun, ZHANG Lihan, YU Hao, WANG Shuang. Adaptive Path Tracking Predictive Control Method for Agricultural Machinery Based on Strategy-based Multi-objective Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):198-207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼