ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)多源遙感數(shù)據(jù)和機(jī)器學(xué)習(xí)的高通量棉花估產(chǎn)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(42471361,、31960386),、新疆維吾爾自治區(qū)重點(diǎn)研發(fā)項(xiàng)目(2024B02004)、中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(ZYYD2024CG23),、新疆農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新穩(wěn)定支持專項(xiàng)(xjnkywdzc-2023007),、新疆“天山英才”培養(yǎng)計(jì)劃項(xiàng)目(2023TSYCTD004)和自治區(qū)財(cái)政專項(xiàng)“數(shù)字棉花科技創(chuàng)新平臺(tái)”建設(shè)項(xiàng)目


High Throughput Cotton Yield Estimation Based on Multi-source Remote Sensing Data from Unmanned Aerial Vehicles and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為綜合利用光譜,、冠層結(jié)構(gòu)、紋理特征等信息對(duì)棉花進(jìn)行無人機(jī)(Unmanned aerial vehicle, UAV)遙感產(chǎn)量估算并系統(tǒng)地分析光譜,、冠層結(jié)構(gòu),、紋理特征等信息對(duì)估產(chǎn)的貢獻(xiàn)程度,本文在構(gòu)建基于多源UAV數(shù)據(jù)棉花估產(chǎn)機(jī)器學(xué)習(xí)模型的基礎(chǔ)上,,進(jìn)一步確定了估產(chǎn)的最佳生育時(shí)期,,并對(duì)比了多源傳感器數(shù)據(jù)在棉花產(chǎn)量估算中的效果,最后量化了各類輸入特征的貢獻(xiàn)度,。采集棉花冠層RGB(Red green blue),、多光譜(Multispectral, MS)和激光雷達(dá)(Light detection and ranging,LiDAR)3種傳感器數(shù)據(jù),,通過對(duì)棉花光譜植被指數(shù)與產(chǎn)量進(jìn)行相關(guān)性分析,,確定了棉花產(chǎn)量估算最佳生育時(shí)期,進(jìn)而構(gòu)建了基于偏最小二乘法回歸(Partial least squares regression,,PLSR),、隨機(jī)森林回歸(Random forest regression,RFR),、極致梯度提升(Extreme gradient boost,,XGBoost)3種機(jī)器學(xué)習(xí)模型的棉花產(chǎn)量估算方法,并評(píng)估了基于2種最常用的傳感器(RGB和MS相機(jī))的性能,。最終確定了光譜特征,、冠層結(jié)構(gòu)、紋理特征這3類特征信息在產(chǎn)量估算中的貢獻(xiàn)度,。研究結(jié)果表明,盛花期是棉花估產(chǎn)的最佳生育時(shí)期,;基于盛花期的UAV數(shù)據(jù),,XGBoost模型取得了最高的產(chǎn)量估算精度(R2為0.70,RMSE為611.31 kg/hm2,,rRMSE為10.60%),,在對(duì)比基于RGB和MS圖像數(shù)據(jù)提取的特征時(shí),基于MS圖像數(shù)據(jù)提取的特征建模結(jié)果更好,,同時(shí)將RGB和MS相機(jī)2種傳感器數(shù)據(jù)提取的特征作為輸入時(shí),,模型結(jié)果高于單一傳感器;使用夏普利加性解釋(Shapley additive explanations,,SHAP)算法分析了機(jī)器學(xué)習(xí)模型中各個(gè)輸入特征對(duì)于估產(chǎn)的貢獻(xiàn)度,,發(fā)現(xiàn)基于3種傳感器的3種特征信息在產(chǎn)量估算方面都具有重要意義,其中,,紋理特征與冠層結(jié)構(gòu)在產(chǎn)量估算中展現(xiàn)出了較好的潛力,。本研究可為棉花智慧化管理中高通量棉花產(chǎn)量估算提供理論和技術(shù)支持,。

    Abstract:

    Aiming to utilize information from spectral data, canopy structure, and texture features for cotton yield estimation through unmanned aerial vehicle (UAV) remote sensing, while systematically analyzing the contribution of these factors to yield estimation, based on the construction of a machine learning model for cotton yield estimation by using multi-source UAV data, the optimal growth stage for yield estimation was further identified and the effectiveness of multi-source sensor data in estimating cotton yield was compared. Finally, the contribution of various input features was quantified. Data were collected from three types of sensors: RGB (red, green, blue), multi-spectral (MS), and light detection and ranging (LiDAR). By conducting a correlation analysis between cotton spectral vegetation indices and yield, the optimal growth stage for cotton yield estimation was determined. Subsequently, yield estimation methods were developed by using three machine learning models: partial least squares regression (PLSR), random forest regression (RFR), and extreme gradient boosting (XGBoost). The performance of models based on the two most commonly used sensors (RGB and MS cameras) was evaluated. The results confirmed that the flowering stage was the optimal growth period for cotton yield estimation. Using UAV data from the flowering stage, the XGBoost model achieved the highest yield estimation accuracy (R2 was 0.70, RMSE was 611.31 kg/hm2, rRMSE was 10.60%). When comparing features extracted from RGB and MS image data, the modeling results based on MS camera data were superior. Additionally, when features extracted from both RGB and MS camera data were used as inputs, the model performance exceeded that of single-sensor data. The Shapley additive explanations (SHAP) algorithm was employed to analyze the contribution of each input feature in the machine learning models for yield estimation. It was found that the three types of feature information derived from the three sensors were all significant for yield estimation, with texture features and canopy structure demonstrating considerable potential in this regard. The research result can provide theoretical and technical support for high-throughput cotton yield estimation in smart cotton management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮美臣,蘇悅,林濤,余汛,宋揚(yáng),金秀良.基于無人機(jī)多源遙感數(shù)據(jù)和機(jī)器學(xué)習(xí)的高通量棉花估產(chǎn)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):169-179. FENG Meichen, SU Yue, LIN Tao, YU Xun, SONG Yang, JIN Xiuliang. High Throughput Cotton Yield Estimation Based on Multi-source Remote Sensing Data from Unmanned Aerial Vehicles and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):169-179.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼