ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v8-ABSeg的雙孢蘑菇表型參數(shù)提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省“三農(nóng)九方”農(nóng)業(yè)科技協(xié)作計劃揭榜掛帥項目(2023SNJF027),、浙江省領(lǐng)雁計劃項目(2021C02038&2021C02061)、溫嶺市“揭榜掛帥”重點(diǎn)研發(fā)項目(2022N00005)和中央農(nóng)機(jī)研發(fā)制造推廣應(yīng)用一體化試點(diǎn)項目(2025ZYNJYFZZ009)


Extraction Method of Phenotypic Parameters of Agaricus bisporus Based on YOLO v8-ABSeg
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對雙孢蘑菇采摘前人工獲取其表型參數(shù)效率低,、成本高的問題,,提出了一種基于實(shí)例分割且適用于現(xiàn)代化工廠環(huán)境的雙孢蘑菇表型參數(shù)提取方法。首先,,對YOLO v8n-Seg實(shí)例分割模型進(jìn)行改進(jìn),,引入快速神經(jīng)網(wǎng)絡(luò)(Faster neural network,F(xiàn)asterNet),,并采用局部卷積(Partial convolutions,,PConv)減少冗余計算和內(nèi)存訪問,引入SE(Squeeze-and-excitation)注意力機(jī)制到特征融合網(wǎng)絡(luò)中,,增加了網(wǎng)絡(luò)對輸入信息中重要部分的關(guān)注度,,降低無關(guān)信息的干擾,,改進(jìn)后的模型完成了對雙孢蘑菇目標(biāo)的實(shí)例分割,。最后,基于分割結(jié)果,,提出了雙孢蘑菇子實(shí)體4種表型參數(shù)的提取方法,,包括菇蓋直徑、菇蓋圓度,、菇蓋白度以及菇蓋表面色斑,。實(shí)驗結(jié)果表明,YOLO v8-ABSeg模型在自建雙孢蘑菇數(shù)據(jù)集上的mask精度比原模型提高了1.6個百分點(diǎn),,且參數(shù)量,、浮點(diǎn)數(shù)運(yùn)算量和內(nèi)存占用量分別降低了38.7%、25.0%和36.8%,,幀率提高了11.3%,。此外,雙孢蘑菇表型參數(shù)計算結(jié)果與人工測量結(jié)果誤差小于10%。該方法可應(yīng)用于雙孢蘑菇表型參數(shù)的自動化獲取,,為生長模型建立,、在線實(shí)時環(huán)境控制等提供技術(shù)基礎(chǔ)。

    Abstract:

    In order to overcome the problem of low efficiency and high cost in the manual acquisition of phenotypic parameters of Agaricus bisporus, an instance segmentation-based method for calculating phenotypic parameters for modern industrial environments was proposed. Firstly, the YOLO v8n-Seg instance segmentation model was improved through the introduction of faster neural network (FasterNet), including the employment of partial convolutions (PConv) to reduce redundant computations and memory accesses. The squeeze-and-excitation (SE) attention mechanism was incorporated into the feature fusion network to enhance the model’s focus on the critical target components, minimizing interference from irrelevant background. The improved model successfully performed instance segmentation on Agaricus bisporus. Based on the segmentation results, four phenotypic parameters of the mushroom sub-entities were figured out: cap diameter, cap roundness, cap whiteness, and the color spots on the surface. Experimental results demonstrated that the YOLO v8-ABSeg model achieved a 1.6 percentage points improvement in mask accuracy on proposed custom-built Agaricus bisporus dataset, with reductions of 38.7%, 25.0%, and 36.8% in the number of parameters, floating-point operations, and weight file size, respectively,,frames per second was increased by 11.3%. Additionally, the calculated phenotypic parameters exhibited a measurement error of no more than 10% when compared with manual measurement results. This method provided a foundation for the automation of phenotypic parameter extraction and can be applied to other applications like the development of growth models and real-time environmental control systems, and so on.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

苗全龍,周揚(yáng),李建濤,周延鎖,李玉.基于YOLO v8-ABSeg的雙孢蘑菇表型參數(shù)提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(3):158-168. MIAO Quanlong, ZHOU Yang, LI Jiantao, ZHOU Yansuo, LI Yu. Extraction Method of Phenotypic Parameters of Agaricus bisporus Based on YOLO v8-ABSeg[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):158-168.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼