ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機(jī)制的植物三維點(diǎn)云語(yǔ)義分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

上海市科技創(chuàng)新計(jì)劃項(xiàng)目(20dz1203800)


3D Plant Point Cloud Semantic Segmentation Method APSegNet Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在植物表型分析中,,植物器官分割是實(shí)現(xiàn)自動(dòng)、準(zhǔn)確,、無(wú)損,、高通量表型參數(shù)測(cè)量的關(guān)鍵。傳統(tǒng)的植物器官分割方法憑借經(jīng)驗(yàn)手動(dòng)設(shè)置參數(shù)和調(diào)整算法,,而現(xiàn)有的基于深度學(xué)習(xí)的分割方法存在對(duì)局部特征和全局特征表達(dá)能力不足的缺陷,。針對(duì)以上問(wèn)題,本文提出一個(gè)基于注意力機(jī)制的植物三維點(diǎn)云語(yǔ)義分割網(wǎng)絡(luò)(APSegNet),。在編碼階段提出了一種基于注意力機(jī)制的局部(鄰域)特征提取方法,,充分利用多級(jí)點(diǎn)云特征,提高了網(wǎng)絡(luò)提取點(diǎn)云局部(鄰域)特征的能力,。在解碼階段提出了一種結(jié)合特征距離和空間距離的雙近鄰插值上采樣方法,,更準(zhǔn)確地恢復(fù)下采樣時(shí)丟失的點(diǎn)云特征,進(jìn)一步增強(qiáng)了網(wǎng)絡(luò)對(duì)局部特征的表達(dá)能力,。同時(shí)引入通道和多頭空間自注意力機(jī)制,,增強(qiáng)網(wǎng)絡(luò)對(duì)某些重要通道的關(guān)注和全局幾何結(jié)構(gòu)的捕捉能力,,提高了網(wǎng)絡(luò)對(duì)全局特征的表達(dá)能力。在多種植物點(diǎn)云數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,,該方法語(yǔ)義分割平均交并比分別達(dá)到87.32%,、79.68%、94.73%,、91.43%,、95.02%,均優(yōu)于DGCNN,、PointCNN,、ShellNet等目前流行的深度學(xué)習(xí)網(wǎng)絡(luò)。通過(guò)交叉驗(yàn)證實(shí)驗(yàn)和消融實(shí)驗(yàn),,證實(shí)了網(wǎng)絡(luò)泛化性和有效性,。在ShapeNet數(shù)據(jù)集上進(jìn)行了相關(guān)實(shí)驗(yàn),該網(wǎng)絡(luò)在其他非植物三維點(diǎn)云目標(biāo)語(yǔ)義分割任務(wù)上也取得了較好的分割結(jié)果,。

    Abstract:

    In plant phenotypic analysis, plant organ segmentation is the key to achieve automatic, accurate, non-destructive and high-throughput phenotypic parameter measurement. Traditional plant organ segmentation methods rely on experience to manually set parameters and adjust algorithms, but the existing deep learning based segmentation methods have insufficient ability to express local and global features. In order to solve these shortcomings, a semantic segmentation network for three-dimensional point clouds was proposed based on attention mechanism. In the coding stage, a local feature extraction method based on attention mechanism was proposed, which made full use of multilevel point cloud features and improved the ability of network to extract local feature of point cloud. In the decoding stage, a double nearest neighbor interpolation upsampling method combining feature distance and spatial distance was proposed to recover the lost point cloud features in downsampling more accurately, and further enhanced the expression ability of local features. At the same time, the channel and multi-head spatial self-attention mechanism were introduced to enhance the attention of the network to some important channels and ability to capture the global geometric structure, and improve the expression ability of the network for global features. Experimental results on a variety of plant point cloud datasets showed that the mean intersection over union of semantic segmentation of the proposed method reached 87.32%, 79.68%, 94.73%, 91.43%, 95.02%, respectively, which were better than those of popular deep learning networks such as DGCNN, PointCNN, ShellNet and so on. Cross validation experiments and ablation experiments were carried out to confirm the generalization and effectiveness of the network. Relevant experiments were carried out on ShapeNet dataset, and the network also achieved good segmentation results on other non plant 3D point cloud target semantic segmentation tasks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鄒一波,周澤政,陳明,葛艷,王文娟.基于注意力機(jī)制的植物三維點(diǎn)云語(yǔ)義分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):129-139,,157. ZOU Yibo, ZHOU Zezheng, CHEN Ming, GE Yan, WANG Wenjuan.3D Plant Point Cloud Semantic Segmentation Method APSegNet Based on Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):129-139,157.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼