ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合多源評價(jià)數(shù)據(jù)的荔枝果期表型特征評估
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

廣東省重點(diǎn)區(qū)域研發(fā)計(jì)劃項(xiàng)目(2023B0202090001),、高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃項(xiàng)目(D18019),、廣州市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023B03J139)、廣東省農(nóng)業(yè)人工智能重點(diǎn)實(shí)驗(yàn)室開放課題(GDKL-AAL-2023007)和華南農(nóng)業(yè)大學(xué)農(nóng)業(yè)裝備技術(shù)全國重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(SKLAET-202412)


Evaluation of Phenotypic Characteristics in Litchi Fruiting Stage Using Multi-source Evaluation Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    人工智能技術(shù)在荔枝表型獲取方面的研究目前主要集中于對象識別,、產(chǎn)量預(yù)估和采摘定位等,,對荔枝完整果期生長質(zhì)量的評價(jià)技術(shù)較為缺乏。本研究通過融合多源數(shù)據(jù)指標(biāo),,對荔枝果期生長質(zhì)量進(jìn)行綜合評估,,生成荔枝果期評價(jià)畫像?;赮OLO v7網(wǎng)絡(luò)框架提出果實(shí)識別算法LFS-YOLO,,通過減少由動態(tài)環(huán)境背景引起的誤差和影響,集成全局注意力能力,,提升全景圖像識別的準(zhǔn)確性,。其次,通過優(yōu)化CIoU損失函數(shù),,添加考慮預(yù)期回歸向量之間的角度,,重新定義并改進(jìn)角度懲罰測度以減少整體自由度,將預(yù)測框更有效地對齊到最近的軸上,。通過融合多源數(shù)據(jù),,建立質(zhì)量評估函數(shù),為綜合評價(jià)提供依據(jù),。試驗(yàn)結(jié)果表明,,LFS-YOLO對果實(shí)識別精度達(dá)到89.1%,精確率為92.3%,,召回率為93.0%,,且生成的荔枝果期表型特征評估方法可顯示荔枝果期影響生長質(zhì)量各項(xiàng)指標(biāo),為荔枝果期綜合評價(jià)發(fā)展提供啟示作用,。

    Abstract:

    The application of artificial intelligence technology in litchi phenotype acquisition mainly focuses on object recognition, yield estimation, and picking localization. However, there is a notable lack of evaluation technology for assessing litchi growth quality throughout its entire fruiting stage. Aiming to integrate multi-source data indicators to perform a comprehensive assessment of litchi growth quality during the fruiting stage, thereby generating the evaluation profiles for litchi fruiting stages, based on the YOLO v7 network framework, an object recognition algorithm named LFS-YOLO was proposed. This algorithm enhanced recognition accuracy by mitigating errors and influences stemming from dynamic environmental backgrounds and by incorporating global attention mechanisms. Furthermore, the CIoU loss function was optimized through the inclusion of the angle between predicted regression vectors, which redefined and improved the angle penalty measure. This optimization reduced the overall degrees of freedom, thereby facilitating a more effective alignment of predicted bounding boxes with the nearest axis. By integrating multi-dimensional data, a quality evaluation function was established as the foundation for comprehensive evaluation. Experimental results indicated that the LFS-YOLO algorithm achieved a recognition accuracy of 89.1%, a precision of 92.3%, and a recall of 93.0%. The evaluation profiles generated for the litchi fruiting stage illustrated various indicators that influence growth quality throughout this stage, providing valuable insights for the advancement of comprehensive evaluation technologies pertaining to litchi fruiting stage.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸健強(qiáng),袁家俊,余超然,王衛(wèi)星,牛宏宇,蘭玉彬,譚揚(yáng)奕.融合多源評價(jià)數(shù)據(jù)的荔枝果期表型特征評估[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):91-100. LU Jianqiang, YUAN Jiajun, YU Chaoyan, WANG Weixing, NIU Hongyu, LAN Yubin, TAN Yangyi. Evaluation of Phenotypic Characteristics in Litchi Fruiting Stage Using Multi-source Evaluation Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):91-100.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2025-01-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼