ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于單視角RGBD圖像的柑橘果實(shí)三維重建與表型檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系崗位科學(xué)家項(xiàng)目(CARS-26)


Three-dimensional Reconstruction and Phenotype Detection of Citrus Fruits Based on Single-view RGBD Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水果表型的測量和分析是植物育種和遺傳學(xué)研究的一個(gè)重要領(lǐng)域。單視角RGBD圖像的表型檢測方法通量高,、成本低,,但受限于傳感器分辨率和視角,通常無法獲取果實(shí)的表面積和體積等數(shù)據(jù),。本文提出了一種基于PFNET的點(diǎn)云補(bǔ)全網(wǎng)絡(luò)改進(jìn)方法,,可使用深度相機(jī)獲取的類球形果實(shí)單視角點(diǎn)云進(jìn)行高精度三維重建并進(jìn)行表型無損測量。為解決補(bǔ)全網(wǎng)絡(luò)輸入比例不固定的問題,,提出了一種自適應(yīng)幾何補(bǔ)全策略將單視角點(diǎn)云補(bǔ)全為近似的半球,。在PFNET網(wǎng)絡(luò)框架上增加了第4尺度,以充分利用KINECT相機(jī)獲取的稠密點(diǎn)云,,有利于復(fù)雜形狀和細(xì)節(jié)豐富的結(jié)構(gòu)補(bǔ)全,。通過引入四頭自注意力模塊,能更好地捕捉點(diǎn)云中各點(diǎn)間的相互依賴和空間關(guān)系,,提升網(wǎng)絡(luò)特征提取能力,。增添了果實(shí)點(diǎn)云優(yōu)化模塊,解決原網(wǎng)絡(luò)生成點(diǎn)云存在局部擴(kuò)散的問題并提升點(diǎn)云質(zhì)量,,模擬人工測量方式設(shè)計(jì)了針對性的表型檢測方法,。實(shí)驗(yàn)結(jié)果表明,該方法與結(jié)構(gòu)光三維掃描儀獲取的柑橘果實(shí)點(diǎn)云質(zhì)量接近,三維重建還原度高,。對于橫徑,、縱徑、表面積和體積4種表型檢測的R2均大于0.96,,平均測量精度均超過93.24%,。與RGBD圖像法相比,單果檢測時(shí)間增加17.97 s,,但橫縱徑檢測精度大幅提高,,且能一次測量4項(xiàng)表型參數(shù)。與三維掃描儀方法相比,,檢測精度差值在4個(gè)百分點(diǎn)以內(nèi),,但速度超過48倍,硬件成本只有后者的1/10,,且易于實(shí)現(xiàn)自動(dòng)化,。本文方法在檢測精度、運(yùn)行速度,、硬件成本和自動(dòng)化程度上具有較好的平衡,,是一種低成本、綜合性能高的三維重建技術(shù),,有廣泛應(yīng)用于類球形果實(shí)表型無損測量的潛力,。

    Abstract:

    The measurement and analysis of fruit phenotypes are crucial aspects of plant breeding and genetics research. Methods for phenotype detection using single-view RGBD images offer high throughput and low cost but are limited by sensor resolution and perspective, often failing to obtain data such as the surface area and volume of fruits. An improved method was proposed based on PFNET that used a depth camera to capture single-view point clouds of spherical-like fruits for high-precision 3D reconstruction and non-invasive phenotype measurements. To address the issue of varying input scales in the completion network, an adaptive geometric completion strategy was introduced to transform single-view point clouds into approximate hemispheres. The addition of a fourth scale to the PFNET framework enhanced the utilization of dense point clouds acquired by KINECT cameras, facilitating the completion of complex shapes and structures rich in detail. By incorporating a four head self-attention module, the network’s ability to capture interdependencies and spatial relationships among points in the point cloud was improved, enhancing feature extraction capabilities. An optimized fruit point cloud module was added to resolve issues with local diffusion in the original network generated point clouds and to improve their quality. A targeted phenotype detection method, designed to mimic manual measurements, was also proposed. Experimental results showed that this method achieved point cloud quality comparable to that obtained by structured light 3D scanners for citrus fruits, with high fidelity in 3D reconstruction. For the detection of four phenotypes—transverse diameter, longitudinal diameter, surface area, and volume—the R2 values exceeded 0.96, with average measurement accuracy above 93.24%, approaching that of 3D scanners but at 50 times of the efficiency and one-tenth of the cost. Compared with RGBD image methods, the single fruit detection time was increased by 17.97 s, but there was a significant improvement in transverse and longitudinal diameter detection accuracy, allowing for the simultaneous measurement of four phenotypic parameters. Compared with the 3D scanner method, the difference in detection accuracy was within 4 percentage points, but the speed was more than 48 times faster, with hardware costs reduced to only one-tenth of the latter’s and easier implementation of automation. This method struck a good balance between detection accuracy, operational speed, hardware cost, and level of automation, offering a cost-effective, high-performance 3D reconstruction technology with great potential for non-invasive measurement of spherical-like fruit phenotypes.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐勝勇,易同舟,秦子軼,樊清濤,楊宏磊,李善軍.基于單視角RGBD圖像的柑橘果實(shí)三維重建與表型檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):80-90. XU Shengyong, YI Tongzhou, QIN Ziyi, FAN Qingtao, YANG Honglei, LI Shanjun. Three-dimensional Reconstruction and Phenotype Detection of Citrus Fruits Based on Single-view RGBD Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):80-90.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼