ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于表型機(jī)器人的小麥關(guān)鍵生育期表型檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省重點研發(fā)計劃項目(2023TZXD004、2024LZGC006,、2022LZGCQY002)和山東省博士后創(chuàng)新項目(SDCX-ZG-202400195)


Phenotyping Identification Method for Key Wheat Growth Stage Based on Phenotyping Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決傳統(tǒng)田間小麥表型數(shù)據(jù)采集與解析自動化水平低和精準(zhǔn)性差的問題,,研制了小麥表型機(jī)器人底盤,并提出一種基于表型機(jī)器人的小麥關(guān)鍵生育期表型檢測方法,。首先,,提出了TD-YOLO v11出苗檢測模型,實現(xiàn)了田間小麥出苗精準(zhǔn)識別,。該模型在特征提取網(wǎng)絡(luò)中引入可變性卷積模塊(Deformable convolutional v4, DCNv4),,增強(qiáng)模型捕捉上下文信息的能力,降低計算復(fù)雜度和參數(shù)量,。此外,,引入任務(wù)動態(tài)對齊檢測頭(Task dynamic align detection head, TDADH),通過動態(tài)選擇特征,,提高模型的分類和定位性能,。然后,構(gòu)建了融合多傳感器與邊緣計算的小麥表型解析系統(tǒng),,該系統(tǒng)集成了出苗檢測方法與前期研究提出的抽穗期監(jiān)測及開花期判定等表型解析方法,,實現(xiàn)了田間表型數(shù)據(jù)的高效自動化采集與解析。結(jié)果表明,,提出的方法具有較高的小麥出苗識別精度(R2為0.908,,RMSE為11.73,,rRMSE為23.04%),同時實現(xiàn)小麥抽穗期及開花期表型的動態(tài)監(jiān)測,。該方法可用于田間小麥表型數(shù)據(jù)的高通量采集和高效解析,,為小麥育種田間表型獲取工作提供了高效、可靠的技術(shù)支持,。

    Abstract:

    Aiming to address the challenges of low automation and poor accuracy in traditional field wheat phenotyping data collection and analysis, a wheat phenotyping identification robot chassis was developed and a phenotypic detection method for key wheat growth stages was proposed based on a phenotyping robot. Initially, a TD-YOLO v11 seedling detection model was proposed to achieve automated and precise recognition of wheat seedling emergence in the field. The incorporation of the DCNv4 module into the feature extraction network enhanced its ability to capture contextual information, allowing for the extraction of feature representations with fewer network parameters, thereby reducing computational complexity and the number of parameters. Moreover, the introduction of a task dynamic alignment detection head further utilized information from intermediate layers, promoting consistency between classification and localization tasks, and improving the model’s classification and localization performance during seedling detection. Subsequently, a phenotyping identification system for wheat was constructed, integrating multi-sensor fusion and edge computing. This system integrated the seedling detection method with previously proposed phenotyping identification techniques for heading stage monitoring and flowering stage determination, enabling the efficient and automated collection and analysis of field phenotypic data. The results indicated that the proposed method had a high accuracy in wheat seedling emergence identification (R2=0.908, RMSE=11.73, rRMSE=23.04%). It also enabled dynamic monitoring of wheat heading and flowering stages, exhibiting excellent temporal feature capture capabilities. The system facilitated precise determination of wheat growth stages and accurate analysis of key phenotypic traits, including spike number, spikelet number, flower number, and seedling emergence. This method can be applied for high throughput collection and efficient analysis of field wheat phenotypic data, providing effective and reliable technical support for field phenotype acquisition in wheat breeding.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋緒斌,王春穎,李明,趙興田,王慶隆,楊明清,劉平.基于表型機(jī)器人的小麥關(guān)鍵生育期表型檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(3):67-79. SONG Xubin, WANG Chunying, LI Ming, ZHAO Xingtian, WANG Qinglong, YANG Mingqing, LIU Ping. Phenotyping Identification Method for Key Wheat Growth Stage Based on Phenotyping Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):67-79.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼