ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

自主導(dǎo)航柑橘表型巡檢機(jī)器人設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2024YFD1200500),、華中農(nóng)業(yè)大學(xué)數(shù)字農(nóng)業(yè)研究專項(xiàng)(2662024SZ002)和湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023BBB119)


Design and Experimentation of Autonomous Navigated Citrus Phenotype Inspection Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高柑橘育苗的自動(dòng)化水平,,提出了一種適用于柑橘育苗的全自動(dòng)表型巡檢機(jī)器人。首先結(jié)合三維激光雷達(dá)與慣導(dǎo)信息對(duì)育苗環(huán)境進(jìn)行SLAM建圖,,對(duì)得到的三維點(diǎn)云地圖進(jìn)行預(yù)處理與投影,,得到適用于規(guī)劃和導(dǎo)航的二維地圖。然后,,采用HDL_localization定位算法進(jìn)行精準(zhǔn)定位,,并結(jié)合Dijkstra算法與TEB算法,實(shí)現(xiàn)在全局路徑規(guī)劃的同時(shí)優(yōu)化局部路徑,,規(guī)劃出理想的巡檢路線,,保障巡檢的可靠性和安全性。在巡檢過程中,,工控機(jī)上運(yùn)行的YOLO v8網(wǎng)絡(luò)不斷處理來自位于機(jī)器人兩側(cè)深度相機(jī)所拍攝的圖像,,識(shí)別出圖像中的柑橘苗,計(jì)算得到株高,,同時(shí)將這些數(shù)據(jù)實(shí)時(shí)上傳至網(wǎng)絡(luò)數(shù)據(jù)庫,。針對(duì)柑橘苗株高計(jì)算,提出并比較了3種不同的方法,。試驗(yàn)結(jié)果證明,,巡檢機(jī)器人自動(dòng)駕駛時(shí)的定位結(jié)果與從高精度RTK定位中獲取的真值相比,平均定位誤差為5.6 cm,,最大定位誤差為17.5 cm,;使用最優(yōu)的計(jì)算方法獲取的柑橘苗高度與人工測量的真值相比,平均絕對(duì)誤差為1.88 cm,,最大絕對(duì)誤差為7 cm,,均方誤差為5.93 cm2。

    Abstract:

    In order to improve the automation level of citrus nursery, a fully automated phenotype inspection robot suitable for citrus nursery was proposed. Firstly, SLAM mapping of the nursery environment was performed by combining 3D LiDAR and inertial guidance information, and the obtained 3D point cloud map was preprocessed and projected to obtain a 2D map suitable for planning and navigation. Then the HDL_localization positioning algorithm was used for accurate positioning, and combined with the Dijkstra algorithm and TEB algorithm, to achieve the optimization of local paths while global path planning, plan the ideal inspection route, and ensure the reliability and safety of inspection. During the inspection process, the YOLO v8 network running on the industrial computer continuously processed the images from the depth cameras on both sides of the robot, recognized the citrus seedlings in the images, calculated the plant height, and uploaded these data to the network database in real time. Three different methods were proposed and compared for citrus seedling plant height calculation. The experiments proved that the localization of the inspection robot on autopilot had an average localization error of 5.6 cm and a maximum localization error of 17.5 cm compared with the true value obtained from high-precision RTK localization, and the height of the citrus seedlings obtained by using the optimal computation method had an average absolute error of 1.88 cm, a maximum absolute error of 7 cm, and a mean-square error of 5.93 cm2 compared with the true value of the manual measurements.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳耀暉,李家一,鮑澤韓,郝國強(qiáng),余勇華,李善軍.自主導(dǎo)航柑橘表型巡檢機(jī)器人設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(3):49-57. CHEN Yaohui, LI Jiayi, BAO Zehan, HAO Guoqiang, YU Yonghua, LI Shanjun. Design and Experimentation of Autonomous Navigated Citrus Phenotype Inspection Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(3):49-57.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-03-10
  • 出版日期:
文章二維碼