ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

諧波減速器MDBO-CNN-LSTM剩余使用壽命預(yù)測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52365064),、內(nèi)蒙古關(guān)鍵技術(shù)攻關(guān)項(xiàng)目(2021GG0255),、內(nèi)蒙古自治區(qū)高等學(xué)校創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃項(xiàng)目(NMGIRT2213)、內(nèi)蒙古自治區(qū)直屬高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目 ( ZTY2023005、 JY20230043 ),、 內(nèi)蒙古自然科學(xué)基金項(xiàng)目(2023LHMS05018,、2023LHMS05017)、內(nèi)蒙古自治區(qū)高等學(xué)校青年科技英才支持計(jì)劃項(xiàng)目(NJYT23043)和內(nèi)蒙古自治區(qū)“英才興蒙”工程團(tuán)隊(duì)項(xiàng)目(2025TEL02)


Prediction of RUL of Harmonic Reducer Based on MDBO-CNN-LSTM Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)諧波減速器剩余使用壽命預(yù)測(cè)退化節(jié)點(diǎn)難以選取,、退化指標(biāo)與物理解釋性差,、預(yù)測(cè)效果偏差較大等問題,提出了一維堆疊卷積自編碼器融合深度卷積嵌入式聚類(SCAE-DCEC)提取退化點(diǎn),并結(jié)合改進(jìn)蜣螂優(yōu)化算法(DBO)優(yōu)化CNN-LSTM的諧波減速器剩余使用壽命預(yù)測(cè)方法。對(duì)振動(dòng)信號(hào)進(jìn)行一維堆疊卷積自編碼器與深度卷積嵌入式聚類,解決了退化節(jié)點(diǎn)難以選取,、退化指標(biāo)與預(yù)測(cè)網(wǎng)絡(luò)契合度差等難題;構(gòu)建了基于SPM混沌映射,、自適應(yīng)概率閾值和差分變異擾動(dòng)的改進(jìn)蜣螂優(yōu)化算法,并對(duì)其性能進(jìn)行評(píng)估。利用MDBO對(duì)CNN-LSTM超參數(shù)進(jìn)行優(yōu)化,形成MDBO-CNN-LSTM的剩余使用壽命預(yù)測(cè)模型,。在搭建的諧波減速器實(shí)驗(yàn)臺(tái)進(jìn)行加速壽命實(shí)驗(yàn)及預(yù)測(cè)驗(yàn)證,實(shí)驗(yàn)結(jié)果表明MDBO-CNN-LSTM訓(xùn)練后預(yù)測(cè)模型擬合優(yōu)度明顯高于CNN,、LSTM、CNN-LSTM,、DBOCNN-LSTM網(wǎng)絡(luò),、直接退化全卷積、直接退化的貝葉斯優(yōu)化LSTM的RUL預(yù)測(cè)方法,其預(yù)測(cè)精度達(dá)到91.33%,且該方法對(duì)諧波減速器壽命后期退化趨勢(shì)中的衰退特征具有較強(qiáng)的辨識(shí)能力,。

    Abstract:

    Aiming to address challenges in predicting the remaining useful life ( RUL) of harmonic drives-such as difficulties in selecting degradation nodes, poor physical interpretability of degradation indicators, and large prediction deviations, a novel approach was proposed. The method combined a one- dimensional stacked convolutional autoencoder ( SCAE) integrated with deep convolutional embedded clustering (DCEC) for degradation point extraction, along with an improved dung beetle optimization (DBO) algorithm to enhance the performance of a CNN-LSTM-based RUL prediction model. The vibration signals were processed by using the SCAE DCEC framework to identify degradation nodes, addressing issues related to the difficulty of node selection and the low compatibility between degradation indicators and the predictive network. Secondly, a modified dung beetle optimization (MDBO) algorithm was developed, incorporating SPM chaotic mapping, adaptive probability thresholds, and differential mutation perturbations, with its performance rigorously evaluated. Thirdly, the MDBO algorithm was applied to optimize the hyperparameters of the CNN-LSTM model, forming the MDBO-CNN-LSTM-RUL prediction model. An accelerated life test and validation experiment were conducted by using a harmonic drive test bench. The experimental results demonstrated that the MDBO CNN LSTM model significantly outperformed CNN, LSTM, CNN-LSTM, DBO-CNN-LSTM, fully convolutional networks, and Bayesian-optimized LSTM models in terms of goodness of fit. The proposed model achieved a prediction accuracy of 91.33% and exhibited superior recognition capability for capturing the degradation trends during the late stages of the lifecycle of harmonic drive.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘭月政,劉彪,石超,郭世杰,呂賀,唐術(shù)鋒.諧波減速器MDBO-CNN-LSTM剩余使用壽命預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):533-543. LAN Yuezheng, LIU Biao, SHI Chao, GUO Shijie, Lü He, TANG Shufeng. Prediction of RUL of Harmonic Reducer Based on MDBO-CNN-LSTM Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):533-543.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼