ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

赤點(diǎn)石斑魚(yú)氨氮應(yīng)激行為嵌入式表征研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

浙江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021C02025)、浙江省三農(nóng)九方項(xiàng)目(2023SNJF077)和溫州市農(nóng)業(yè)高新園區(qū)開(kāi)放性項(xiàng)目(KN20210009)


Behavioral Representation for Ammonia-nitrogen Stress of Epinephelus akaara for Embedded System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于應(yīng)激行為學(xué)的赤點(diǎn)石斑魚(yú)應(yīng)激行為表征是實(shí)現(xiàn)赤點(diǎn)石斑魚(yú)氨氮脅迫識(shí)別的前提與基礎(chǔ),但現(xiàn)有方法大多依賴(lài)于高性能硬件,不利于行為表征方法在養(yǎng)殖現(xiàn)場(chǎng)嵌入式系統(tǒng)上部署和應(yīng)用,。針對(duì)這一問(wèn)題,結(jié)合赤點(diǎn)石斑魚(yú)氨氮脅迫環(huán)境下活動(dòng)量減少,、軀體痙攣失衡等癥狀,提出了一種基于輕量化檢測(cè)跟蹤算法的赤點(diǎn)石斑魚(yú)氨氮應(yīng)激行為表征方法。首先使用GhostV2卷積對(duì)YOLOv5s進(jìn)行輕量化改進(jìn),采用AFPN來(lái)支持不同維度特征直接融合,消融對(duì)比實(shí)驗(yàn)結(jié)果表明,改進(jìn)后輕量化模型準(zhǔn)確率和召回率分別為94.3%和89.5%,平均精度均值為96.2%,較改進(jìn)前提高1.6個(gè)百分點(diǎn),模型內(nèi)存占用量約為輕量化前模型的60%,。為了減少在復(fù)雜環(huán)境中跟蹤時(shí)赤點(diǎn)石斑魚(yú)ID頻繁跳變的問(wèn)題,本文在Ocsort中嵌入了一個(gè)輕量級(jí)的外觀特征提取網(wǎng)絡(luò)并在目標(biāo)關(guān)聯(lián)時(shí)將目標(biāo)的外觀相似度矩陣引入總匹配代價(jià)矩陣;對(duì)比實(shí)驗(yàn)結(jié)果表明,改進(jìn)后跟蹤算法MOTA和IDF1分別為94.7%和69.3%,比YOLOv5s與OCSORT的檢測(cè)跟蹤算法分別提高3.2,、6.7個(gè)百分點(diǎn)。最終結(jié)合石斑魚(yú)氨氮應(yīng)激行為學(xué)研究結(jié)果,選用赤點(diǎn)石斑魚(yú)平均運(yùn)動(dòng)速度,、軀體失衡石斑魚(yú)數(shù)量來(lái)表征赤點(diǎn)石斑魚(yú)氨氮應(yīng)激行為,行為識(shí)別準(zhǔn)確率為92.2%,可準(zhǔn)確檢測(cè)出赤點(diǎn)石斑魚(yú)是否處于氨氮脅迫環(huán)境中,。本文的輕量化表征方法可部署到JetsonOrinNano嵌入式系統(tǒng)上,平均運(yùn)行速度為6f/s,可為工廠化赤點(diǎn)石斑魚(yú)養(yǎng)殖氨氮脅迫的高效實(shí)時(shí)識(shí)別提供技術(shù)支撐。

    Abstract:

    The stress behavior representation based on research on ammonia nitrogen stress behavior is the premise and basis for realizing the recognition of ammonia nitrogen stress of Epinephelus akaara. However, most of the existing methods rely on high-performance hardware, which is not conducive to the embedded deployment and application of behavior representation methods in aquaculture. Taking symptoms such as reduced activity and imbalanced body of Epinephelus akaara under stress environment into account, a behavior representation method was proposed to represent the ammonia nitrogen stress behavior of Epinephelus akaara based on lightweight detection and tracking algorithm. In the detection algorithm, GhostV2 convolution was firstly used to lighten the feature extraction network of YOLO v5s. Then asymptotic feature pyramid network was integrated into the neck of YOLO v5s to support direct interactive fusion of different dimensional features. The results of ablation and comparison experiments showed that the accuracy and recall rate achieved 94.3% and 89.5% and mAP@ 0.5 of the lightweight model was 96.2% , which was 1.6 percentage points higher than that of the original model while the model volume was about 60% of that of the original model. In the tracking algorithm, a lightweight ReID network was embeded into Ocsort and the appearance similarity matrix was introduced into the matching cost matrix in target association period. Comparison experiments showed that MOTA and IDF1 of improved tracking algorithm achieved 94.7% and 69.3% , which were 3.2 percentage points and 6.7 percentage points higher than that of the original Ocsort with YOLO v5s. Combined with the research on ammonia nitrogen stress behavior, average velocity and number of imbalanced Epinephelus akaara were selected to characterize the ammonia nitrogen stress behavior of Epinephelus akaara. The accuracy of identifying the behavior of Epinephelus akaara based on the characterization proposed method was 92.2% , which can accurately classify whether the Epinephelus akaara was under ammonia nitrogen stress environment. The lightweight characterization method can be deployed on Jetson Orin Nano embedded system, with an average speed of 6 f / s, providing technical support for efficient and real-time identification of ammonia nitrogen stress in aquaculture.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

聶鵬程,錢(qián)程,汪清平,曾國(guó)權(quán),馬建忠,劉世晶.赤點(diǎn)石斑魚(yú)氨氮應(yīng)激行為嵌入式表征研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):503-510,,522. NIE Pengcheng, QIAN Cheng, WANG Qingping, ZENG Guoquan, MA Jianzhong, LIU Shijin. Behavioral Representation for Ammonia-nitrogen Stress of Epinephelus akaara for Embedded System[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):503-510,,522.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-01
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼