ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于局部圖像特征聚合的溫室場景識(shí)別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1500204、2023YFD1501303)


Greenhouse Scene Recognition Method Based on Local Image Feature Aggregation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    場景識(shí)別可作為溫室環(huán)境空間定位的替代方案,也是智能農(nóng)機(jī)裝備視覺系統(tǒng)的重要功能之一。針對(duì)以特征聚類為基礎(chǔ)的場景識(shí)別范式無法適應(yīng)高動(dòng)態(tài)變化且高度相似的溫室場景識(shí)別的問題,提出一種基于深度特征聚合的溫室場景識(shí)別方法,以預(yù)訓(xùn)練的視覺Transformer網(wǎng)絡(luò)為基礎(chǔ),提取場景圖像局部特征,應(yīng)用多層感知機(jī)全局感受野特性,考慮局部特征空間關(guān)系,融合圖像局部特征,生成場景圖像全局描述子,以多重相似性損失最小化為優(yōu)化目標(biāo),構(gòu)建溫室場景識(shí)別模型,。試驗(yàn)結(jié)果表明,模型場景識(shí)別R@1(top-1召回率),、R@5和R@10分別達(dá)到78.43%、89.21%和92.47%,具有較高的場景識(shí)別精度,。所提出的基于多層感知機(jī)的特征混合方法是有效的,與采用池化操作進(jìn)行特征聚合相比,R@1提高8.01個(gè)百分點(diǎn),。模型對(duì)光照條件變化具有一定的魯棒性,與正常的中等光照條件相比,強(qiáng)光及弱光條件下,R@1下降未超過4.00個(gè)百分點(diǎn)。相機(jī)視角及采樣距離的變化也會(huì)影響模型識(shí)別性能,20°以內(nèi)的視角變化,R@1下降6.61個(gè)百分點(diǎn),2倍以內(nèi)的距離變化,R@1下降17.87個(gè)百分點(diǎn),。與現(xiàn)有場景識(shí)別基準(zhǔn)方法NetVLAD,、GeM、Patch-NetVLAD,、MultiRes-NetVLAD和MixVPR相比,R@1分別提高7.82,、6.59、3.56,、4.14,、1.88個(gè)百分點(diǎn),在溫室場景識(shí)別任務(wù)上模型性能有較大提升。該研究構(gòu)建的基于多層感知機(jī)的圖像全局特征聚合方法,能夠生成可靠的全局描述子,用于溫室場景識(shí)別,且具有一定的光照,、視角,、距離及時(shí)間變化的魯棒性,研究結(jié)果可為智能農(nóng)機(jī)視覺系統(tǒng)設(shè)計(jì)提供技術(shù)參考。

    Abstract:

    Scene recognition could be used as an alternative for spatial positioning in greenhouse environments, and it was also one of the important functions of the visual system of intelligent agricultural machinery equipment. Addressing the issue that scene recognition paradigms based on feature clustering could not adapt to the recognition of greenhouse scenes with high dynamic changes and high similarity, a greenhouse scene recognition method based on deep feature aggregation was proposed. This method, grounded on a pre-trained visual transformer network, extracted local features from scene images. It applied the global receptive field characteristics of multi-layer perceptron, took into account the spatial relationships of local features, fused the local features of the images, and generated global descriptors for the scene images. With the goal of minimizing multi-similarity loss as the optimization objective, a greenhouse scene recognition model was constructed. The test results indicated that the R@ 1 ( top 1 recall rate), R @ 5, and R @ 10 of the model’s scene recognition reached 78.43% , 89.21% , and 92.47% , respectively, and it possessed high scene recognition accuracy. The proposed feature mixing method based on multi-layer perceptron was proven effective, with an improvement of 8.01 percentages in R@ 1 compared with that of feature aggregation using pooling operations. The model demonstrated a certain robustness to changes in lighting conditions, with the R@ 1 metric decreased by no more than 4.00 percentages under strong and weak lighting conditions compared with that under normal medium lighting conditions. Changes in camera angle and sampling distance also impacted the model’s recognition performance, with a decline of 6.61 percentages for angle changes within 20 degrees, and a drop of 17.87 percentages for distance changes within twice the original distance. Compared with the existing scene recognition benchmark methods, including NetVLAD, GeM, Patch-NetVLAD, MultiRes-NetVLAD, and MixVPR, the R@ 1 of proposed model was improved by 7.82, 6.59, 3.56, 4.14, and 1.88 percentages, respectively, demonstrating a significant performance enhancement on the greenhouse scene recognition task. The image global feature aggregation method based on multi-layer perceptron constructed was able to generate reliable global descriptors for greenhouse scene recognition, and exhibited robustness to changes in lighting, viewpoint, distance, and time. The research findings would provide technical references for the design of visual systems for intelligent agricultural machinery.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

于美玲,周云成,侯玉涵,劉峻渟.基于局部圖像特征聚合的溫室場景識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):485-494. YU Meiling, ZHOU Yuncheng, HOU Yuhan, LIU Junting. Greenhouse Scene Recognition Method Based on Local Image Feature Aggregation[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):485-494.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼