ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于CBCW-YOLO v8的豬只行為識別方法研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

青島農(nóng)業(yè)大學(xué)博士啟動基金項(xiàng)目(1121005),、農(nóng)業(yè)農(nóng)村部華南熱帶智慧農(nóng)業(yè)技術(shù)重點(diǎn)實(shí)驗(yàn)室開放課題(HNZHNY-KFKT-202206),、山東省科技型中小企業(yè)創(chuàng)新能力提升工程項(xiàng)目(2023TSGC0741)和國家自然科學(xué)基金面上項(xiàng)目(32372934)


Pig Behavior Recognition Based on CBCW-YOLO v8 Mode
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著現(xiàn)代生豬養(yǎng)殖業(yè)快速發(fā)展,對豬只行為精準(zhǔn)識別需求日益增長。針對豬只行為多樣性,、特征相似性,、相互遮擋和堆積等問題,提出一種基于改進(jìn)YOLOv8模型的豬只行為識別方法。首先,引入ConvNeXtV2作為主干特征提取網(wǎng)絡(luò),以增強(qiáng)對檢測目標(biāo)的語義信息提取能力,。其次,在特征融合網(wǎng)絡(luò)中添加加權(quán)雙向特征金字塔網(wǎng)絡(luò)(BiFPN),強(qiáng)化模型特征融合能力,。此外,結(jié)合上采樣算子CARAFE,進(jìn)一步提升模型在行為識別過程中特征提取能力。最后,使用WIoUv3作為損失函數(shù),優(yōu)化模型檢測精度,。經(jīng)實(shí)驗(yàn)驗(yàn)證,改進(jìn)后模型準(zhǔn)確率,、召回率、平均精度均值和F1值分別達(dá)到89.6%,、88.0%,、91.9%和88.8%,與TOOD、YOLOv7和YOLOv8模型相比,平均精度均值分別提高10.9,、6.3,、3.7個百分點(diǎn),顯著提高豬只行為識別精度。消融實(shí)驗(yàn)表明,各項(xiàng)改進(jìn)均對模型的識別性能有提升效果,ConvNeXtV2主干特征提取網(wǎng)絡(luò)對模型的提升效果最明顯,。綜上所述,CBCW-YOLOv8模型在豬只行為識別任務(wù)中展現(xiàn)出優(yōu)良的綜合性能,為豬只健康管理和疾病預(yù)警提供有力的技術(shù)支持,。

    Abstract:

    With the rapid development of modern pig breeding industry, the demand for precise recognition of pig behaviors is increasing. Aiming to address the issues of diversity of pig behaviors, similarity of features, mutual occlusion and stacking, a pig behavior recognition method based on the improved YOLO v8 model was proposed. Firstly, the ConvNeXt V2 was introduced as the backbone feature extraction network to enhance the ability to extract semantic information of the detection target. Secondly, the bi-directional feature pyramid network (BiFPN) was added to the feature fusion network to enhance the feature fusion ability of the model. Thirdly, combined with the CARAFE up-sampling operator, the feature extraction ability of the model in the process of behavior recognition was further improved. Finally, the WIoUv3 was used as the loss function to optimize the detection accuracy of the model. The experimental results showed that the precision rate, recall rate, mean average precision and F1 value of the improved model reached 89.6% , 88.0% , 91.9% and 88.8% , respectively. Compared with TOOD, YOLO v7 and YOLO v8 models, the mean average precision was increased by 10.9, 6.3 and 3.7 percentage points, respectively, which significantly improved the accuracy of pig behavior recognition. The ablation experiments showed that all the improvements improved the recognition performance of the model, and the ConvNeXt V2 backbone feature extraction network had the most obvious improvement effect on the model. In summary, the CBCW-YOLO v8 model demonstrated excellent overall performance in pig behavior recognition tasks and provided powerful technical support for pig health management and disease early warning.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

仝志民,徐天哲,石傳淼,李盛章,謝秋菊,榮麗紅.基于CBCW-YOLO v8的豬只行為識別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(2):411-419. TONG Zhimin, XU Tianzhe, SHI Chuanmiao, LI Shengzhang, XIE Qiuju, RONG Lihong. Pig Behavior Recognition Based on CBCW-YOLO v8 Mode[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):411-419.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼