ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于小樣本學(xué)習(xí)的鱗翅目害蟲圖像識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2001801)和北京市農(nóng)林科學(xué)院協(xié)同創(chuàng)新中心建設(shè)專項(xiàng)


Image Recognition Method for Lepidoptera Pests Based on Few-shot Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)面對(duì)害蟲數(shù)據(jù)稀缺的實(shí)際場(chǎng)景時(shí),現(xiàn)有害蟲圖像識(shí)別方法容易出現(xiàn)過擬合導(dǎo)致模型表達(dá)能力不足的問題,本研究提出了一種結(jié)合度量學(xué)習(xí)和遷移學(xué)習(xí)的小樣本田間害蟲圖像分類識(shí)別方法。 首先,使用 ECA PyramidResNet12 模型在 mini-ImageNet 數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練;其次,在度量模塊中添加 ECA 通道注意力機(jī)制,通過捕捉通道間的依賴關(guān)系來增強(qiáng)害蟲的圖像特征表示;然后,使用特征金字塔結(jié)構(gòu)來捕獲害蟲圖像的局部特征和害蟲的多尺度特征;最后,利用 20 類自建鱗翅目害蟲圖像作為元數(shù)據(jù)集,對(duì)模型進(jìn)行元訓(xùn)練和元測(cè)試,。 實(shí)驗(yàn)結(jié)果表明,在3-way 5-shot 和 5-way 5-shot 條件下,本文模型準(zhǔn)確率分別達(dá)到 91.16% 和 87.26% ,比 SSFormers,、DeepBDC 方法分別提高 4.58、1.35 個(gè)百分點(diǎn),。 提出的模型有效提升了小樣本學(xué)習(xí)中目標(biāo)圖像特征的表達(dá)能力,能夠?yàn)閿?shù)據(jù)稀缺場(chǎng)景下的田間害蟲自動(dòng)識(shí)別提供方法參考,。

    Abstract:

    In real-world scenarios where pest data is scarce, existing pest image recognition methods are prone to overfitting, resulting in insufficient model expressiveness. To address this issue, a novel few-shot field pest image classification method that integrated metric learning with transfer learning was proposed. Firstly, the ECA Pyramid ResNet12 model was pretrained on the mini ImageNet dataset. Subsequently, PN was chosen as the classifier, and cosine similarity was selected as the distance metric. The ECA channel attention mechanism was then incorporated into the metric module to enhance pest image feature representation by capturing inter-channel dependencies, with a kernel size of 3. Additionally, a feature pyramid structure was employed to capture the local and multi-scale features of pest images. After evaluating different pooling combinations, the 2 × 2 + 4 × 4 pooling combination was selected. Finally, a meta-dataset comprising 20 self-built categories of Lepidoptera pest images was utilized for meta-training and meta-testing of the model. Experimental results demonstrated that under 3-way 5-shot and 5-way 5-shot conditions, the proposed method achieved accuracy rates of 91.16% and 87.26% , respectively, surpassing the most relevant works of the past two years, SSFormers and DeepBDC, by 4.58 percentage points and 1.35 percentage points. The proposed model effectively enhanced the feature representation of target images in few-shot learning, providing a methodological reference for the automatic identification of field pests in data-scarce scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊信廷,周子潔,李文勇,陳曉,王慧,于合龍.基于小樣本學(xué)習(xí)的鱗翅目害蟲圖像識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):402-410. YANG Xinting, ZHOU Zijie, LI Wenyong, CHEN Xiao, WANG Hui, YU Helong. Image Recognition Method for Lepidoptera Pests Based on Few-shot Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):402-410.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼