ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LT-YOLO檢測與機(jī)器視覺的蘋果激光疏花試驗臺參數(shù)優(yōu)化與試驗
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系果品產(chǎn)業(yè)創(chuàng)新團(tuán)隊項目(SDAIT 06 12)和濰坊市科技發(fā)展計劃項目(2024RKX076)


Parameter Optimization and Testing of Apple Laser Flower Thinning Test Bed Based on LT-YOLO Inspection and Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對蘋果花激光疏花技術(shù)中的關(guān)鍵參數(shù)優(yōu)化問題,設(shè)計了激光疏花試驗臺,。通過正交試驗法,優(yōu)化了試驗臺高度,、激光打擊時間及PWM占空比,得到最佳參數(shù)組合:激光高度為20cm、打擊時間為10s,、激光功率(PWM占空比)為50%將達(dá)到最佳的疏花效果,。針對激光疏花中蘋果花識別與定位,提出了LTYOLO(Light weight and targeted you only lookonce)蘋果花檢測模型,設(shè)計了基于ViTBlock的DPRViTBlock模塊和基于C2f模塊的DPRVBC2f模塊,并添加了DPRVBC2f模塊和ELA注意力模塊,應(yīng)用于檢測骨干和檢測頭的特征提取,以增強(qiáng)對蘋果花的檢測性能,驗證集中該模型的準(zhǔn)確率、召回率和平均精度均值分別為83.16%,、82.15%和87.47%,相比YOLOv8模型分別提高5.04,、2.12、2.15個百分點(diǎn),內(nèi)存占用量為5.26MB,檢測速度為128f/s,滿足使用時的準(zhǔn)確性和實(shí)時性的要求,。該研究為蘋果花疏花技術(shù)進(jìn)一步優(yōu)化與智能化應(yīng)用提供了科學(xué)依據(jù),。

    Abstract:

    Laser flower thinning technology, as an emerging and promising technology in the field of smart orchard management, still faced critical challenges in optimizing laser parameters and achieving precise apple flower detection. Aiming at the optimization of key parameters in apple blossom laser flower thinning technology, a laser flower thinning test stand was designed, and the height of the test stand, the laser striking time and the PWM duty cycle were optimized by the orthogonal test method to obtain the optimal parameter combinations: a laser height of 20 cm,a striking time of 10 s and a laser power(PWM duty cycle) of 50% would achieve the best flower thinning effect. For apple flower identification and localization in laser flower thinning, the lightweight anl targeted-you only look once (LT-YOL0)apple flower detection model was proposed, the DPRVITBlock module based on ViTBlock and the DPRVBC2f module based on the C2f module were designed, and the ELA attention module of the DPRVBC2f module was added,which was applied in the feature extraction of the detection backbone and the detection head to enhance the apple blossom detection performance, validation focused on the accuracy,recall and average mean of the model were 83.16%,82.15% and 87.47%,respectively,compared with that of the YOLO v8 model it was improved by 5.04 percentage points,2.12 percentage points and 2.15 percentage poin1ts,respectively. The model size was 5.26 MB and the detection speed was 128/s,which met the accuracy and real-time requirements for use. The research result can provide a scientific basis for the further optimization and intelligent application of apple flower thinning technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高昂,吳昆,宋月鵬,任龍龍,馬偉,劉一琳.基于LT-YOLO檢測與機(jī)器視覺的蘋果激光疏花試驗臺參數(shù)優(yōu)化與試驗[J].農(nóng)業(yè)機(jī)械學(xué)報,2025,56(2):393-401. GAO Ang, WU Kun, SONG Yuepeng, REN Longlong, MA Wei, LIU Yilin. Parameter Optimization and Testing of Apple Laser Flower Thinning Test Bed Based on LT-YOLO Inspection and Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):393-401.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼