ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于客觀賦權(quán)法和集成學(xué)習(xí)的作物遙感分類研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山西省基礎(chǔ)研究計劃項目(202303021212157,、202303021221149)


Remote Sensing Crop Classification Based on Objective Weighting Method and Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    不同作物遙感分類算法具備不同的學(xué)習(xí)能力和容錯能力,單一分類器的精度因研究區(qū)和使用的數(shù)據(jù)不同而存在差異,沒有一種分類器能夠在所有情況下都獲得最優(yōu)表現(xiàn),。鑒于此,本文提出了基于客觀賦權(quán)法集成多分類器的集成學(xué)習(xí)算法用于作物分類。以K最近鄰法,、支持向量機,、隨機森林、BP神經(jīng)網(wǎng)絡(luò)和一維卷積神經(jīng)網(wǎng)絡(luò)為基分類器,基于Sentinel2多光譜影像計算時序歸一化植被指數(shù)(Normalized difference vegetation index,NDVI)作為輸入特征,。對熵值法和變異系數(shù)法進行改進,并結(jié)合組合賦權(quán)法對5個基分類器進行加權(quán)集成,。結(jié)果表明,利用改進的賦權(quán)方法確定基分類器的權(quán)重獲得的分類精度高于利用原始賦權(quán)方法,并且基于組合賦權(quán)法對改進的熵值法和改進的變異系數(shù)法進行組合獲得的分類精度略高于基于單一賦權(quán)方法獲得的分類精度。與基分類器相比,基于F1值和歸一化組合賦權(quán)法構(gòu)建的集成學(xué)習(xí)算法在美國阿肯色州,、佐治亞州,、得克薩斯州和愛荷華州4個研究區(qū)的分類總體精度分別提高1.12~6.45、0.75~3.98,、0.45~2.70,、1.15~2.50個百分點。與傳統(tǒng)眾數(shù)投票,、概率融合和精度加權(quán)方法相比,本文提出的集成學(xué)習(xí)算法同時考慮了基分類器精度差異與穩(wěn)定性,。

    Abstract:

    Accurate crop map is critical for agricultural monitoring and related decision-making. Although many algorithms were adopted for crop classification, the performance of individual classifier varied with study area and data used. Aiming to address this issue, a novel ensemble learning (EL) framework was developed, which adopted objective weighting methods to assign weights to five widely used classifiers, including K-nearest neighbor, support vector machine, random forest, back propagation neural network and convolutional neural network. Four study sites in the United States were selected to examine the performance of the proposed EL framework. Time series of normalized difference vegetation index derived from Sentinel 2 multispectral instrument images were used as the input features for crop classification. Two modified objective weighting methods, termed modified entropy method (mEN) and modified coefficient of variation method ( mCV), were proposed to determine the weights of base classifiers. The probability outputs of base classifiers were combined with weights to determine the final label. The results showed that weights assigned by modified weighting methods were more reasonable than those by original weighting methods in multi-classifier ensemble. The combination of mEN and mCV (mEN mCV) further amplified the weight difference of base classifiers, and achieved an improved performance than single weighting method. Compared with five base classifiers, overall accuracy achieved by mEN mCV with F1-score as input ( mEN mCV F) was increased by 1.12 ~ 6.45 percentage points, 0.75 ~ 3.98 percentage points, 0.45 ~ 2.70 percentage points and 1.15 ~ 2.50 percentage points at four sites, respectively. The advantage of the proposed EL framework over unweighted ( i. e. , majority vote, probability fusion) and accuracy-weighted methods was that both classification accuracy and stability of base classifiers were considered, thus resulting in a higher performance. These results indicated that the proposed EL framework had potential in improving the accuracy of crop classification.

    參考文獻
    相似文獻
    引證文獻
引用本文

荀蘭,解毅.基于客觀賦權(quán)法和集成學(xué)習(xí)的作物遙感分類研究[J].農(nóng)業(yè)機械學(xué)報,2025,56(2):370-380. XUN Lan, XIE Yi. Remote Sensing Crop Classification Based on Objective Weighting Method and Ensemble Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):370-380.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-09-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼