ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于GA-BP的聯(lián)合收獲機(jī)小麥含水率檢測模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

新一代人工智能國家科技重大項(xiàng)目(2021ZD0110902),、國家小麥產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS 03)和山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022CXGC010608)


Wheat Moisture Content Prediction Model for Combine Harvester Based on GA-BP Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為進(jìn)一步提高基于介電特性的聯(lián)合收獲機(jī)小麥含水率檢測裝置模型檢測精度和適用范圍,本研究以“京冬22號(hào)”、“蜀麥1958冶”,、“渦麥33”3個(gè)品種小麥為研究對(duì)象,測量含水率范圍為8.41%~21.6%,檢測溫度范圍為5~40℃,容重范圍為714.44~777.58kg/m3的小麥相對(duì)介電常數(shù),。試驗(yàn)結(jié)果表明,同一溫度條件下,容重越大,相對(duì)介電常數(shù)越大;在同一容重條件下,相對(duì)介電常數(shù)會(huì)隨溫度升高而增大,也隨含水率升高而變大。采用校正集樣本150個(gè),預(yù)測集樣本42個(gè),基于遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)(GABP)的方法建立了相對(duì)介電常數(shù),、溫度,、容重與小麥含水率的關(guān)系模型,模型采用3-5-1結(jié)構(gòu),最大迭代次數(shù)1000次,學(xué)習(xí)誤差閾值1×10-6。校正集R2,、RMSE,、MAE分別為0.996、0.241%,、0.189%;預(yù)測集R2,、RMSE、MAE分別為0.993,、0.295%,、0.189%,該模型具有較高的檢測精度和穩(wěn)定性,為不同品種小麥含水率在線檢測提供了一種新的檢測方法。

    Abstract:

    In order to improve the detection accuracy and applicability of wheat moisture content detection device for combined harvester based on dielectric properties, the wheat moisture content prediction model was established based on GA-BP method. Focusing on three varieties of wheat, namely “Jingdong 22”, “Shumai 1958” and “Womai 33”. The measured range of wheat moisture content was 8.41% to 21.6% , with the detection temperature ranging from 5℃ to 40℃ and the bulk density ranging from 714.44 kg / m 3 to 777.58 kg / m 3 for wheat dielectric constant. The experiment results indicated that at constant temperature conditions, higher bulk density corresponded to a larger dielectric constant. Similarly, under consistent bulk density, the dielectric constant was increased with the increase of temperature and moisture content. To establish the relationship between dielectric constant, temperature, bulk density, and wheat moisture content, a genetic algorithm optimized back propagation neural network (GA-BP) with 150 samples in the calibration set and 42 samples in the prediction set was established. The model, with a 3-5-1 structure, a maximum iteration of 1 000 times, and a learning error threshold of 1×10 - 6 , demonstrated high detection accuracy and stability. The verification set R 2 , RMSE, and MAE values were 0.996, 0.241% , and 0.189% , respectively, while the prediction set returned values were 0.993, 0.295% , and 0.189% . These results underscored the model’s efficacy in providing a method for online moisture content detection in wheat of different varieties.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

安曉飛,代均益,李立偉,盧昊,尹彥鑫,孟志軍.基于GA-BP的聯(lián)合收獲機(jī)小麥含水率檢測模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):325-332. AN Xiaofei, DAI Junyi, LI Liwei, LU Hao, YIN Yanxin, MENG Zhijun. Wheat Moisture Content Prediction Model for Combine Harvester Based on GA-BP Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):325-332.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-01-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼