ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Transformer FNN和無人機高光譜遙感技術(shù)的棉花黃萎病危害等級分類研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2022YFD2002400),、兵團財政科技計劃項目(2023AB014)、國家自然科學(xué)基金項目(31901401)和華南農(nóng)業(yè)大學(xué)農(nóng)業(yè)裝備技術(shù)全國重點實驗室開放基金項目(SKLAET 202405)


Classification of Cotton Verticillium wilt Severity Levels Based on Transformer FNN and UAV Hyperspectral Remote Sensing Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前使用無人機識別棉花黃萎病危害等級時,光譜數(shù)據(jù)冗余度高和傳統(tǒng)機器學(xué)習(xí)模型識別精度不足等問題,采用無人機搭載NanoHyperspec高光譜成像儀采集棉田高光譜圖像,通過探究棉花冠層對不同黃萎病危害等級的光譜響應(yīng)特征,利用最優(yōu)植被指數(shù)組合建立一種適用于黃萎病危害等級分類的監(jiān)測模型,實現(xiàn)棉花黃萎病危害等級的精準(zhǔn)分類,。首先,利用最小冗余最大相關(guān)算法(Minimum redundancy maximum relevance,mRMR)對17種潛在的植被指數(shù)和270個光譜波段進行特征重要性排序,將mRMR篩選得到的特征,通過逐步遞增分組的方式輸入至極限梯度提升模型(eXtremegradientboosting,XGBoost),確定與黃萎病危害等級相關(guān)性最高的植被指數(shù)和光譜特征波段,。然后,基于Transformer架構(gòu)和前饋神經(jīng)網(wǎng)絡(luò)(Feed forward neural network,FNN)構(gòu)建TransformerFNN棉花黃萎病危害等級分類模型,將植被指數(shù)與光譜特征波段輸入TransformerFNN模型進行分類識別,對比了植被指數(shù)與光譜特征波段對棉花黃萎病危害等級分類識別的準(zhǔn)確性。最后,利用后向傳播神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,BPNN),、Transformer和支持向量機(Support vector machine,SVM)構(gòu)建棉花黃萎病危害等級分類模型,并對這4種分類模型進行精度驗證與對比分析,。結(jié)果表明:棉花黃萎病等級分類的最優(yōu)植被指數(shù)組合為MSR和TVI,最優(yōu)特征波段組合為430、439,、488,、566、697,、722、742,、764,、769、782,、822,、831,、858、873,、878,、893、909,、985nm,。基于TransformerFNN模型,植被指數(shù)對黃萎病危害等級的總體分類精度為95.6%,較光譜特征波段的總體分類精度89.4%提高6.2個百分點,?;谥脖恢笖?shù),TransformerFNN模型對黃萎病危害等級的分類識別率比BPNN模型提高11.2個百分點,比Transformer模型提高17.2個百分點,比SVM模型提高30.8個百分點。研究提出了一種通過植被指數(shù)進行棉花黃萎病高精度監(jiān)測方法,可為大面積棉花黃萎病精確監(jiān)測提供有效措施,。

    Abstract:

    Aiming to address the challenges of high spectral data redundancy and the limited accuracy of traditional machine learning models in identifying cotton Verticillium wilt severity levels, Nano Hyperspec hyperspectral cameras were mounted on drones to collect hyperspectral images of cotton fields. The spectral response characteristics of cotton canopies to different severity levels of Verticillium wilt were analyzed. An optimal vegetation index combination was identified and used to establish a monitoring model suitable for severity classification. This approach enabled precise classification of Verticillium wilt severity levels. The minimum redundancy maximum relevance algorithm was applied to rank the importance of features among 17 vegetation indices and 270 spectral bands. Features selected by this algorithm were incrementally grouped and input into an eXtreme gradient boosting model. This process determined the vegetation indices and spectral bands most strongly correlated with Verticillium wilt severity levels. A Transformer FNN ( feedforward neural network) classification model was then developed. Vegetation indices and spectral features were used as inputs to this model for classification. The classification accuracy of vegetation indices and spectral features in identifying Verticillium wilt severity levels was compared. Additionally, classification models based on back propagation neural network (BPNN), Transformer, and support vector machines ( SVM) were constructed. The accuracy of these models was validated and analyzed. The results showed that the optimal vegetation index combination for Verticillium wilt severity classification was MSR and TVI. The optimal spectral band combination included 430 nm, 439 nm, 488 nm, 566 nm, 697 nm, 722 nm, 742 nm, 764 nm, 769 nm, 782 nm, 822 nm, 831 nm, 858 nm, 873 nm, 878 nm, 893 nm, 909 nm, and 985 nm. Using the Transformer FNN model, the overall classification accuracy based on vegetation indices reached 95.6% . This represented a 6.2 percentage points improvement compared with the accuracy achieved by using spectral features, which was 89.4% . For vegetation indices, the Transformer FNN model achieved a classification accuracy of 95.6% . This was 11.2 percentage points higher than the accuracy of the BPNN model, 17.2 percentage points higher than that of the Transformer model, and 30.8 percentage points higher than that of the SVM model. The research proposed a high-accuracy monitoring method for cotton Verticillium wilt based on vegetation indices. It provided an effective approach for large-scale and precise monitoring of cotton Verticillium wilt.

    參考文獻
    相似文獻
    引證文獻
引用本文

廖娟,梁業(yè)雄,姜銳,邢赫,何欣穎,王輝,曾浩求,何松煒,唐賽歐,羅錫文.基于Transformer FNN和無人機高光譜遙感技術(shù)的棉花黃萎病危害等級分類研究[J].農(nóng)業(yè)機械學(xué)報,2025,56(2):240-251. LIAO Juan, LIANG Yexiong, JIANG Rui, XING He, HE Xinying, WANG Hui, ZENG Haoqiu, HE Songwei, TANG Saiou, LUO Xiwen. Classification of Cotton Verticillium wilt Severity Levels Based on Transformer FNN and UAV Hyperspectral Remote Sensing Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):240-251.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼