ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于VS-1D CNN的玉米籽粒直收機清選損失檢測系統(tǒng)設計與試驗
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2024YFD2001300)


Design and Experiment of VS-1D CNN-based Clearing Loss Detection System for Corn Kernel Direct Harvester
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決傳統(tǒng)清選損失檢測傳感器依靠時域特征閾值分辨籽粒沖擊信號存在的閾值確定難,、魯棒性差,、缺乏適應性等問題,開發(fā)了一套玉米籽粒直收機清選損失檢測系統(tǒng),提出了一種基于變尺度一維卷積神經網絡(VS-1D CNN)的籽粒沖擊分類算法。首先,針對沖擊信號采集,、處理與傳輸設計了硬件電路與軟件處理程序,開發(fā)了配套上位機,。然后,搭建數據采集試驗平臺,采集、保存了不同沖擊高度和角度下雜余,、玉米籽粒沖擊信號,構建了數據集并對VS-1D CNN籽粒沖擊分類算法進行了訓練,訓練結果表明,該模型在測試集上準確率為94.2%,。最后,對所設計的檢測系統(tǒng)在不同工作條件下的性能及不同雜余、籽?;旌衔锏姆诸愋阅苓M行了驗證,結果表明所提出的VS-1D CNN算法性能表現良好,在不同安裝位置和不同籽粒流量下,檢測準確率最高可達95%以上;對于不同比例雜余,、籽粒混合物識別分類準確率達93%以上,表明本文所提出算法性能優(yōu)異,可以在不設置固定時域特征閾值情況下準確檢測籽粒損失,。

    Abstract:

    Aiming to address the challenges of arduous threshold delineation, inadequate robustness, and insufficient adaptability of conventional clearing loss detection sensors that depend on temporal domain feature thresholds to distinguish kernel impact signals, a comprehensive clearing loss detection system for corn kernel direct collectors was developed, and a kernel impact classification algorithm predicated on a variable scale one-dimensional convolutional neural network (VS-1D CNN) was proposed. Initially, the hardware circuitry and software processing program were engineered for impact signal acquisition, processing, and transmission, alongside the development of the supporting host computer. Subsequently, a data acquisition testing platform was established to gather and archive the impact signals of weeds and maize kernels under varying impact heights and angles, thereby constructing a data set and training the VS 1D CNN seed impact classification algorithm, with the training outcomes indicating that the model’s accuracy was 94.2% on the testing set. Ultimately, the efficacy of the devised detection system under diverse operational conditions and the classification performance of distinct stray residues and seed mixtures were validated, with results demonstrating that the proposed VS-1D CNN algorithm performed commendably, achieving detection accuracy exceeding 95% across different installation sites and varying seed flow rates;the classification accuracy for identifying different proportions of stray residues and seed mixtures surpassed 93% , signifying that the proposed algorithm exhibited exceptional performance. This underscored that the algorithm delineated in this manuscript possessed remarkable efficacy and can accurately detect seed losses without establishing a fixed temporal domain feature threshold.

    參考文獻
    相似文獻
    引證文獻
引用本文

邢高勇,葛世聰,盧彩云,趙博,劉陽春,周利明.基于VS-1D CNN的玉米籽粒直收機清選損失檢測系統(tǒng)設計與試驗[J].農業(yè)機械學報,2025,56(2):206-216. XING Gaoyong, GE Shicong, LU Caiyun, ZHAO Bo, LIU Yangchun, ZHOU Liming. Design and Experiment of VS-1D CNN-based Clearing Loss Detection System for Corn Kernel Direct Harvester[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):206-216.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-10-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼