ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于輕量級(jí)RepVIT的農(nóng)機(jī)具工況識(shí)別方法研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃青年科學(xué)家項(xiàng)目(2022YFD2000300)


Lightweight RepVIT-based Working Condition Recognition Method for Agricultural Implements
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決田間復(fù)雜環(huán)境下拖拉機(jī)機(jī)載農(nóng)機(jī)具監(jiān)測(cè)困難、模型參數(shù)量過(guò)大等問(wèn)題,提出了一種基于輕量化RepVIT的農(nóng)機(jī)具識(shí)別模型TMAInet,。利用自主開(kāi)發(fā)的農(nóng)機(jī)服務(wù)平臺(tái)“農(nóng)業(yè)機(jī)械化精準(zhǔn)作業(yè)平臺(tái)暨希望田野冶收集了6種工作狀態(tài)的農(nóng)機(jī)具數(shù)據(jù)集,并通過(guò)Copy-paste等數(shù)據(jù)增強(qiáng)方法將訓(xùn)練集擴(kuò)增至6627幅,。基于RepVIT網(wǎng)絡(luò)模型框架,設(shè)計(jì)了一種卷積前饋模塊(CFF)以提升不同尺度細(xì)粒度特征提取能力,引入了注意力機(jī)制ECA以?xún)?yōu)化模型參數(shù)結(jié)構(gòu)并簡(jiǎn)化特征提取模塊,。通過(guò)Pre-training+Fine-tuning(PF)遷移學(xué)習(xí)方法對(duì)模型進(jìn)行了訓(xùn)練,并在Jetsonnano邊緣設(shè)備上進(jìn)行了部署,。實(shí)驗(yàn)結(jié)果表明,通過(guò)PF遷移學(xué)習(xí)方法,TMAInet模型的識(shí)別準(zhǔn)確率、F1分?jǐn)?shù)和召回率分別達(dá)到99.13%,、98.53%和98.78%,相較于原始的RepVIT模型分別提升1.86,、3.04、1.95個(gè)百分點(diǎn),在邊緣設(shè)備端保持幀速率73f/s的同時(shí)參數(shù)量降低至7.3×106,。TMAInet能夠在實(shí)際應(yīng)用中準(zhǔn)確,、高效監(jiān)測(cè)農(nóng)機(jī)具常見(jiàn)類(lèi)別,為無(wú)人化智慧農(nóng)場(chǎng)的發(fā)展提供技術(shù)參考。

    Abstract:

    Aiming to address the problems of difficulty in monitoring tractor-mounted agricultural implements in complex field environments and the excessive amount of model parameters, a lightweight RepViT-based agricultural implements recognition model, tractor-mounted agricultural implements net (TMAInet ), was proposed. Firstly, the self-developed agricultural machinery service platform ‘Agricultural Mechanisation Precision Operation Platform’ was used to collect the datasets of agricultural implements in six working states, and the training set was expanded to 6 627 frames by data enhancement methods such as copy-paste. Secondly, based on the RepVIT network model framework, a convolutional feed-forward module ( CFF) was designed to improve the ability of fine-grained feature extraction at different scales, and an attention mechanism, ECA, was introduced to optimize the model parameter structure and simplify the feature extraction module. Finally, the model was trained by pre-training + fine-tuning (PF) migration learning method and deployed on Jetson nano edge devices. The experimental results showed that the recognition accuracy, F1 score and recall of the TMAInet model reached 99.13% , 98.53 and 98.78% , respectively, by the PF migration learning method. Compared with the original RepVIT model, the recognition accuracy, F1 score and recall were improved by 1.86 percentage points, 3.04 percentage points and 1.95 percentage points, respectively, and the number of parameters was reduced to 7.3 × 10 6 while maintaining 73 f / s at the edge device side. TMAInet was able to accurately and efficiently monitor the common categories of agricultural implements in practical applications, and it can provide a technical reference for the development of unmanned smart farms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

安麒麟,汪鳳珠,劉陽(yáng)春,鄧學(xué),周利明,趙博,偉利國(guó).基于輕量級(jí)RepVIT的農(nóng)機(jī)具工況識(shí)別方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2025,56(2):187-194,,205. AN Qilin, WANG Fengzhu, LIU Yangchun, DENG Xue, ZHOU Liming, ZHAO Bo, WEI Liguo. Lightweight RepVIT-based Working Condition Recognition Method for Agricultural Implements[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):187-194,,205.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼