ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于IPO-VMD-GRNN的田間四足機器人摔倒狀態(tài)預測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

吉林省科技發(fā)展計劃項目(20230508032RC)和國家自然科學基金項目(32271988)


Predication Method of Fall State for Quadrupedal Robot in Field Based on IPO-VMD-GRNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農業(yè)四足機器人作業(yè)環(huán)境復雜,導致其在田間行走時易摔倒,影響機器人作業(yè)效率,準確預測機身摔倒狀態(tài)對機器人行走穩(wěn)定性具有重要意義,。提出一種基于本體傳感器信號處理的機器人摔倒臨界狀態(tài)預測方法,。首先,采集四足機器人在玉米田間行走摔倒和Gazebo軟件模擬機器人田間行走過程摔倒狀態(tài)的慣性測量傳感器信號,對機器人正常行走、摔倒臨界穩(wěn)定狀態(tài)2個階段及完全摔倒的4種工況信號進行分類,生成不同機身狀態(tài)的信號數據集,。其次,采用種群優(yōu)化算法(Improved population optimization,IPO)優(yōu)化變分模態(tài)分解(Variational modede composition,VMD)參數,提出基于改進種群優(yōu)化變分模態(tài)分解(Improved population optimization variational modede composition,IPOVMD)的信號處理方法;采用IPO算法對廣義回歸神經網絡(General regression neuralnetwork,GRNN)的參數進行優(yōu)化,提出基于改進種群優(yōu)化廣義回歸神經網絡(Improved population optimization general regression neural network, IPOGRNN)模型,。最后,基于上述信號處理方法,建立基于IPOVMDGRNN模型的田間作業(yè)機器人摔倒預測方法,采用機器人實際田間行走橫滾角、俯仰角作為模型測試數據,驗證田間作業(yè)機器人摔倒預測模型性能,。試驗結果表明:提出的IPOVMDGRNN模型輸出總誤差為0.1467,、平均相對誤差為0.0065、均方誤差為0.0003,提取的特征有良好代表性;相比VMDBPNN,、VMDGRNN,、PSOVMDGRNN模型,平均預測成功響應時間縮短127.75、91.5,、39.5ms,。該算法能提供機器人在田間行走時的機器人摔倒臨界狀態(tài)預測能力,可為提高四足機器人自主作業(yè)的田間通過性提供技術支撐。

    Abstract:

    The complex operating environment of agricultural quadruped robots causes them to fall easily when walking in the field, which affects the operating efficiency of the robot, and accurate prediction of the body fall state is of great significance to the walking stability of the robot. A critical state prediction method for robot fall was proposed based on ontology sensor signal processing. Firstly, the inertial measurement sensor signals of the quadruped robot walking and falling in a corn field and the fall state of the robot during field walking simulated by Gazebo software were collected, and the signals of the robot’s normal walking, the two phases of the critical stable state of falling and the four working conditions of complete falling were classified to generate signal datasets of different body states. Secondly, a population optimisation algorithm was used to optimize the parameters of variational mode decomposition (VMD), and an improved population optimization variational mode decomposition ( IPO VMD) algorithm was proposed. And IPO algorithm was adopted to optimize the parameters of general regression neural network (GRNN), and improved population optimization general regression neural network (IPO GRNN) was proposed. Finally, based on the above signal processing method, a fall prediction method for field operation robots based on the IPO VMD GRNN model was established, and the signals of the traverse roll and pitch attitude angle of the robot’s actual field walking were used as the model test data to verify the performance of the fall prediction model for field operation robots. The test results showed that the IPO VMD GRNN model outputed a total error of 0.146 7, an average relative error of 0.006 5, and a mean square error of 0.000 3, and the extracted features were well represented;compared with the VMD BPNN, VMD GRNN, and PSO VMD GRNN models, the average prediction of a successful response time was faster than the average predicted response times of 127.75 ms, 91.5 ms, and 39.5 ms. The algorithm can provide the ability to predict the critical state of robot fall when the robot walked in the field, and the results can provide technical support to improve the field passability of quadruped robots for autonomous operation.

    參考文獻
    相似文獻
    引證文獻
引用本文

張偉榮,陳學庚,齊江濤,周俊博,熊悅淞,王碩.基于IPO-VMD-GRNN的田間四足機器人摔倒狀態(tài)預測方法[J].農業(yè)機械學報,2025,56(2):175-186. ZHANG Weirong, CHEN Xuegeng, QI Jiangtao, ZHOU Junbo, XIONG Yuesong, WANG Shuo. Predication Method of Fall State for Quadrupedal Robot in Field Based on IPO-VMD-GRNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):175-186.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-11-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼