ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進U-Net的高分辨率正射影像圖田間可行駛道路提取方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD200060442)和中國農(nóng)業(yè)大學 2115 人才工程項目


Field Road Extraction Method Based on Improved U-Net for High-resolution Orthophoto Maps
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    田間可行駛道路邊界信息獲取是制作農(nóng)田高精度地圖的基礎。針對現(xiàn)有方法對高分辨率正射影像圖中田間可行駛道路分割不準確,、出現(xiàn)漏檢誤檢等問題,本文提出了一種基于改進UNet的深度學習網(wǎng)絡模型,。該方法首先將主干網(wǎng)絡更換為ResNet50,增強對田間可行駛道路特征提取能力;其次,融合可以提高管狀結構精度的DSConv模塊提高對田間可行駛道路的精度,并抑制與田間道路類似的田間地物背景的特征提取;最后,通過插入ECANet注意力機制來獲取完整的上下文信息,優(yōu)化田間可行駛道路的特征還原過程,從而達到提高模型整體分割精度的目的。在此基礎上,通過傳統(tǒng)圖像處理方法對分割結果進一步地去噪,、消孔,從而獲取高精度的田間可行駛道路邊界信息,。試驗結果表明,改進UNet模型在所構建數(shù)據(jù)集的測試集上MIoU、MPA分別達91.12%,、95.46%,與其他對比模型相比具有最高的評價指標值,使用傳統(tǒng)圖像處理方法后處理后,MIoU和MPA為92.64%和96.75%,分別提高1.52,、1.29個百分點;在對高分辨率正射影像圖田間可行駛道路的識別測試中,MIoU和MPA分別達86.39%和90.01%,可以明顯地識別田間可行駛道路;使用傳統(tǒng)圖像處理方法后對獲得的高分辨率正射影像圖結果進行優(yōu)化后,MIoU和MPA分別為88.34%,、91.53%,分別提高1.95、1.52個百分點,。該研究可以為后續(xù)制作農(nóng)田高精度地圖提供準確的田間可行駛道路邊界信息,。

    Abstract:

    The acquisition of field road boundary information is the basis for making high-precision farmland map. In order to solve the problems of inaccurate segmentation of field roads in high-resolution orthophoto maps, such as missed segmentation and false segmentation, a deep learning network model was proposed based on improved U Net. Firstly, the backbone network was replaced with ResNet50 to enhance the ability to extract the features of drivable roads in the field. Secondly, the DSConv module, which can improve the accuracy of tubular structure, improved the accuracy of the field drivable road, and inhibited the feature extraction of the background of field features similar to the field road. Finally, the complete context information was obtained by inserting the ECA Net attention mechanism, and the feature restoration process of the drivable road in the field was optimized, so as to improve the overall segmentation accuracy of the model. Then the traditional image processing method was used to further denoise and eliminate the hole of the segmentation results, and in view of the problem of losing geographic information in the recognition results, so as to obtain high-precision field road boundary information. The experimental results showed that the improved U Net model had the highest evaluation index values in the comparison with the semantic segmentation model in the test set of the constructed dataset with 95.46% MPA and 91.12% MIoU, after post-processing using traditional image processing methods, MIoU and MPA were 92.64% and 96.75% , respectively, the MIoU and MPA were increased by 1.29 percentage points and 1.52 percentage points;and 86.39% and 90.01% in the field drivable road recognition test of high-resolution orthophoto map, respectively, which can clearly identify the field road. After using the traditional image processing method to optimize the obtained high-resolution orthophoto results, the MIoU and MPA were 88.34% and 91.53% , respectively, and the MIoU and MPA were increased by 1.95 percentage points and 1.52 percentage points, respectively. The research result can provide accurate field road boundary information for the subsequent production of high- precision farmland map.

    參考文獻
    相似文獻
    引證文獻
引用本文

金智文,王寧,肖堅星,王天海,仇瑞承,李寒,張漫.基于改進U-Net的高分辨率正射影像圖田間可行駛道路提取方法[J].農(nóng)業(yè)機械學報,2025,56(2):155-163. JIN Zhiwen, WANG Ning, XIAO Jianxing, WANG Tianhai, QIU Ruicheng, LI Han, ZHANG Man. Field Road Extraction Method Based on Improved U-Net for High-resolution Orthophoto Maps[J]. Transactions of the Chinese Society for Agricultural Machinery,2025,56(2):155-163.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2025-02-10
  • 出版日期:
文章二維碼